材料硬度是一个重要属性,表明材料在不发生显着变形的情况下承受机械力的能力。它是制造和工程中的关键属性,不仅影响产品的性能和使用寿命,而且直接影响生产过程的效率和最终产品的质量。在本文中,我们将仔细研究什么是材料硬度以及如何测量它。
材料硬度是指材料抵抗局部塑性变形(永久变形)的能力。换句话说,它衡量材料在刮擦、压痕和磨损等外力存在下对形状变化的抵抗力。
如下图所示,大多数塑料材料的硬度较低,而钻石很难凹陷或划伤。大多数其他材料介于两者之间。

硬度很容易与其他材料特性(例如韧性和强度)混淆,但它们属于材料的三种不同特性。具体来说,硬度表示表面抵抗变形和磨损的能力,而韧性是指材料吸收能量和塑性变形而不断裂的能力,强度涉及材料承受拉伸、压缩和弯曲力的整体能力。区分这些特性的一个简单方法是记住硬度与表面阻力有关,韧性与能量吸收和变形有关,强度与整体承载能力有关。
同时,这些属性是相互关联的。例如,高硬度的材料通常具有更好的耐磨性,这意味着使用较硬的材料可以减少零件磨损并显着延长部件的使用寿命。硬度还与材料抵抗变形和断裂的能力密切相关。一般来说,硬度高的材料也具有较高的拉伸和压缩强度,通常在许多工程应用中用于确保结构的稳定性和安全性。但需要注意的是,硬度高的材料可能更脆且韧性较低,而韧性高的材料可能硬度较低。

了解硬度的定义后,我们迫不及待地想弄清楚它是如何发挥作用的。现在,我们来探讨三种主要类型:压痕硬度、划痕硬度和回弹硬度。
压痕硬度是指材料在承受连续载荷时抵抗永久变形的能力,这是应用于金属的最常见的载荷形式。因此,在讨论硬度时,通常指的是压痕硬度。
通常通过测量硬物体在特定力下留下的压痕的深度或大小的测试来评估。最广泛使用的测量压痕硬度的方法包括洛氏硬度、布氏硬度和维氏硬度测试。
划痕硬度描述了材料抵抗由于与另一种金属接触而导致其表面划伤的能力。它通常使用莫氏硬度测试来测量,该测试主要用于测试矿物和陶瓷等脆性材料的硬度。
回弹硬度,也称为动态硬度,与材料的弹性有关,描述其吸收冲击能量并将其返回压头的能力。
回弹硬度是通过测量标准锤从材料表面回弹的高度来评估的。里氏硬度计(里氏硬度)是一种基于回弹硬度原理的仪器。
每种类型的硬度都提供了材料抗变形和耐磨性的不同视角,并且可以使用各种方法和尺度进行测量。在介绍测量方法之前,我们首先对硬度单位有一个大致的了解。

如上表所示,我们看到各种硬度名称,例如“HV”、“HB”和“HRB”。它们是什么意思?硬度值本身没有牛顿或帕斯卡等传统物理单位。相反,它们被赋予了测试方法名称(如 HV 或 HB),这些名称在实际使用中有效地充当了它们的“单位”。以下是硬度测量的常用单位:
如前所述,硬度反映了材料表面抵抗刮擦、切割或磨损的能力。它通常是通过向材料表面施加指定的载荷来测量的。以下是常用的硬度测试方法。我们概述了每种方法的原理和主要特征,强调了每种方法在测量硬度方面的优点和局限性。

布氏硬度测试涉及在指定负载下将直径通常为 10 毫米的硬钢或硬质合金球压入材料表面,该负载根据要测试的材料而有所不同。标准载荷为 3000 kg(或 29420 N),通常适用于钢铁等硬质金属。但对于铜和黄铜等较软的材料,施加的载荷为 500 千克(或 4905 N)。该负载被施加预定的时间,然后被移除。使用显微镜测量材料表面上留下的压痕的直径。然后使用以下公式计算布氏硬度值 (HB):

其中,F – 施加的载荷,单位为千克力 (kgf)。在 SI 系统中,通常使用牛顿 (N) 作为载荷单位。在这种情况下,HB 也可以表示为 HBND – 球的直径,mmd – 压痕的直径,mm
布氏硬度测试通常用于测试低至中等硬度的大型或厚材料,例如铸铁、钢、有色金属及其合金。它特别适合测试具有粗粒或不均匀颗粒结构的材料,因为大压痕可以消除局部不一致性。该测试执行起来相对简单,并且需要最少的样品制备。然而,与洛氏或维氏硬度测试等其他硬度测试方法相比,测试设备通常体积庞大且不太便携。

该测试方法首先涉及在预载荷(小载荷)(通常为 10 kgf)下将压头压入材料表面,这有助于压头就位并消除任何表面不规则现象。然后,施加额外的主要负载,总负载(次要负载加主要负载)范围为 60 至 150 kgf,具体取决于所使用的秤。经过指定的停留时间后,移除主要负载,并在仍处于次要负载下时测量压痕深度。
洛氏硬度值可以使用不同的洛氏硬度标度来读取,其中最常用的是 A、B 和 C 标度(HRA、HRB、HRC)。不同的标尺适用于不同类型的材料和硬度范围,每种标尺使用不同的载荷和压头类型。例如,为了测量较硬的钢和硬质合金的硬度,使用主载荷高达150kgf的金刚石圆锥压头,并在“C”刻度上读取硬度值。对于较软的材料,如铜合金、铝和较软的钢,通常使用主载荷高达 100 kgf 的 1/16 英寸直径钢球,硬度值在“B”刻度上读取。
洛氏硬度的计算公式为:

其中,N – 比例因子取决于所使用的比例s – 比例因子取决于所使用的比例d –与较小载荷相比的永久压痕深度,mm
该方法快速且易于执行,并且可以直接从洛氏硬度标尺读取硬度结果。共有 30 个标尺可用于测试不同的材料和硬度范围。因此,该方法常用于各行业的质量控制和材料测试。然而,洛氏测试对于极硬的材料(例如陶瓷)或非常软的材料(例如橡胶)可能并不理想。

该测试使用具有方形底座且相对面之间的角度为 136 度的金刚石金字塔形压头。压头以特定的载荷压入材料并保持一定的时间。卸载后留下方形压痕。使用显微镜或其他精密测量设备测量压痕两条对角线的长度。然后使用这些测量值使用以下公式计算维氏硬度值 (HV):

其中,F – 施加的载荷,kgfd – 对角线的平均长度,mm
维氏硬度测试用途广泛,几乎可用于测试所有材料,从非常软的金属到极硬的陶瓷。它提供精确的硬度值,并且可以在非常小的区域或薄层上执行。此外,由于所有材料都使用相同的金刚石压头,因此计算硬度值非常简单。然而,这种测试方法需要专门的设备,例如显微硬度测试仪和高质量的显微镜,价格昂贵。此外,测量压痕对角线非常耗时,尤其是对于多次测试。

莫氏硬度测试是划痕测试。它是一种定性方法,以 1(最软)到 10(最硬)的等级来比较材料对已知硬度矿物的刮擦能力。滑石最软 (1),金刚石最硬 (10)。
该方法简单、快速,不需要复杂的设备。它对于现场工作以及矿物和其他材料的快速识别非常有用。然而,它仅提供相对硬度值,并且依赖于操作者的技能和经验。
现代划痕测试已从简单的莫氏硬度测试发展为更复杂的方法,通常使用精密设备,例如金刚石压头和受控加载机构,以提供更准确和可重复的材料硬度和耐磨性测量。这些测试可以量化材料的耐刮擦性,并广泛应用于各个行业,包括涂料、金属、陶瓷和复合材料。

巩膜测试测量材料的回弹硬度。它涉及使用金刚石尖锤从固定高度落到材料上,并测量回弹高度。回弹越高,材料越硬。
该测试是一种传统但直接且非破坏性的测量,现在经常出现在更专业或历史背景中。相比之下,里氏硬度测试也是一种基于测试质量回弹速度的无损测试,在现代应用中已很大程度上取代了巩膜测试。里氏硬度测试由于其便携性、多功能性且通常包括数字读数,应用更为广泛,特别是现场测试和大规模工业用途。
一旦您知道零件将承受的负载条件类型,您就可以考虑上述任何硬度测试方法来比较您的材料选择。或者,您可以依赖供应商和在线资源(例如 Matweb)提供的信息。此外,材料硬度图也是了解和比较各种材料硬度的重要参考工具。下图提供了使用各种测量方法获得的这些不同材料的硬度值。


如果您想为您的项目选择合适的材料,您必须了解材料的硬度。作为一家拥有 10 多年经验和加工多种材料能力的 CNC 加工制造商,我们可以从可靠的原材料供应商处获得最准确的硬度数据。我们还有一个内部工厂,并定期进行硬度测试,作为我们质量控制程序的重要组成部分。
当然,如果您有具体要求,我们可以提供专业、详细的测试报告。我们不仅拥有一支可以测试材料硬度的质量控制专家团队,而且还拥有一支专业的工程师和机械师团队,以确保每个项目都符合最高质量每次都符合标准。
如何选择合适的硬度测试方法?
选择合适的硬度测试方法时,应考虑材料的类型、厚度、表面状况以及所需的测试精度等因素。以下几点可以作为重要参考:
硬度值与应力应变曲线有何关系?
硬度值提供了材料抗压痕或划痕的定量指标,而应力-应变曲线则全面展示了材料在不同应力水平下的变形行为。
尽管硬度和应力应变参数之间没有直接的数学相关性,但硬度值通常可以间接指示材料的弹性模量和屈服强度。硬度值高的材料通常在应力-应变曲线上表现出较陡的弹性区域和较高的屈服点,表明其较高的屈服强度和较大的抗变形能力。相反,硬度值较低的材料可能表现出更具延展性的行为,并且曲线上的塑性区域较长。为了全面评估材料的力学性能,有必要了解这两个因素之间的关系。
几乎我们日常使用的每一种产品,从智能手机到汽车,其起源都可以追溯到制造过程。这些流程不仅决定产品的质量和生产效率,还直接影响企业的成本控制和市场竞争力。在本文中,我们将定义制造工艺,深入研究它们的类别和各种方法。现在让我们开始探索它们的广泛含义!
在日常生活中,我们经常会遇到各种物体上有倒角和圆角的设计。例如,家用电器、家具和儿童玩具的边缘通常都有倒角或圆角,以防止我们被刮伤或受伤。同样,我们使用的消费电子产品也经常采用倒角和圆角来增强视觉吸引力和触觉体验。出于安全、美观和功能等原因,这两种工艺都广泛应用于制造中,以修改产品的边缘。
当工程师谈论“压力”时,它们的意思与考试焦虑或工作压力截然不同。在这里,压力是材料中每单位区域的内力。伸展橡皮筋或在拔河船上拉绳子,您会看到拉伸压力在作用中,这种压力使材料在负载下伸长。 在本文中,我们解释了什么是拉伸应力,它与压力应力和拉伸强度,关键公式以及chiggo如何将这些考虑因素纳入现实世界制造业的方式有何不同。 什么是拉伸压力? 拉伸压力描述了当您尝试将其拉开时材料的反应。它导致材料沿施加载荷的轴伸长。正式地,它被定义为施加的力除以垂直于该力的横截面区域。 拉伸应力与压力应力 拉伸应力与压缩应力相反。当力起作用伸展或延长物体时,会发生拉伸应力,而当力挤压或缩短后,会发生压力。想象一下坚固的金属条:两端拉动,并且会遇到拉伸压力,略微拉长。将两端推动,好像试图沿其长度粉碎它,并且棒会遇到压力,缩短或凸起。 这些应力也可以同时在结构的不同部分发生。例如,当人或机器在混凝土地板板上移动时,平板的顶部表面被推入压缩,而底部表面则以张力拉伸。如果底部的拉伸应力太高,则可能会出现裂缝 - 这就是为什么工程师将钢筋放在那里抵抗张力的原因。 拉伸应力与拉伸强度 拉伸应力材料在给定时刻所经历的负载是每单位面积的力。它会根据施加力而升高和下降。抗拉强度相比之下,是固定材料的特性,它是材料在产生或断裂之前可以应付的最大拉伸压力。 实际上,工程师不断比较两者。如果零件中的实际拉伸应力保持在其拉伸强度以下,则该零件将略微伸展但保持完整。如果压力超过强度,则会发生故障。这就是为什么设计始终包括安全余量,确保现实压力远低于所选材料的已知强度的原因。 拉伸应力公式 拉伸时,拉伸应力在其拉伸时测量内力。它以一个简单的公式计算: σ= f / a 在哪里: σ=拉伸应力(在Pascals,MPA或PSI中) F =施加力(纽顿或磅) a =横截面区域(以mm²或英寸为单位) 这个方程告诉我们拉力的集中力量。较高的负载或较小的横截面会产生较高的应力。例如,悬浮在细线上的相同重量会产生比厚电缆上的压力要大得多。这就是为什么工程师大小的电缆,杆或横梁以保持压力远低于所使用材料的安全限制的原因。 但是,尽管这种公式给了我们压力的数值,但并未揭示材料本身将如何响应。它会突然突然折断,永久弯曲还是弹簧回到原始形状?为了回答这一点,工程师依靠压力 - 应变曲线。 了解应力应变曲线 为了创建应力 - 应变曲线,将测试标本(通常是Dogbone形)放置在拉伸测试机中。机器握住各端,并逐渐将它们拉开,将样品拉伸至破裂。在此过程中,连续测量施加的应力和所得应力(相对于原始长度的长度变化)。 将结果用X轴的应变绘制,并在Y轴上的应力。在此曲线上,可以识别几个关键点: 弹性区域 起初,压力和应变是成比例的。这是弹性区域,其中胡克定律适用(σ=e猛)。该线性部分的斜率是弹性模量(Young的模量),一种刚度的度量。在该区域中,一旦卸下负载,材料将返回其原始形状。 产量点 随着加载的增加,曲线从直线偏离。这是产量点,弹性行为结束,塑性(永久)变形开始。除此之外,即使卸下负载,材料也不会完全恢复其原始形状。 终极拉伸强度(UTS) 曲线持续向上进入塑料区域,达到峰值。这个最高点是最终的拉伸强度(UTS),它代表材料在颈部(局部变薄)开始之前承受的最大压力。 断裂点 在UTS之后,曲线随着样品颈的倾斜而向下倾斜,无法再承担那么多的负载。最终,材料在断裂点断裂。对于延性材料,由于颈部,骨折的应力通常低于UTS。对于脆性材料,裂缝可能会突然发生在弹性极限附近,而塑性变形很小。 拉伸压力的实际应用 在材料被拉,悬挂或拉伸的任何情况下,拉伸压力决定了它是否可以安全地承担负载或是否会失败。以下是一些关键应用程序和示例: 桥梁和建筑 想想悬挂桥,例如金门桥 - 悬挂在塔之间的巨大钢电缆处于恒定的拉伸压力下,支撑道路和车辆的重量。工程师为这些电缆选择高强度的钢,以便他们可以处理重负荷以及诸如风或地震等额外的力量而不会失败。现代建筑也巧妙地使用了紧张。例如,在预应力的混凝土中,钢质肌腱被嵌入并拉伸,以便梁可以安全地处理载荷。 电缆,绳索和链条 许多日常系统还直接依赖拉伸压力。以电梯为例:其钢电缆处于恒定的张力,不仅承载汽车的重量,而且还带有加速或停止时的额外力。起重机以相同的原理运行,使用高应答电缆安全地抬起和移动重载。即使在像吉他这样简单的东西中,拉伸压力也会发挥作用 - 越紧手起来钉子,琴弦的张力越大,这会使音高提高,直到推到太远的话,琴弦最终会破裂。 机器和螺栓 在机械工程中,拉伸应力同样重要。通过稍微拉伸飞机或汽车发动机工作中的螺栓和螺钉 - 由此产生的拉伸应力会产生将零件固定在一起的夹紧力。如果螺栓的压力过高(拧紧时扭矩过多或使用过多的负载),它可能会产生和失败,可能导致机器分开。这就是为什么螺栓通过表明其产量和拉伸强度的等级进行评分的原因,以及为什么将临界螺栓拧紧到指定的紧张局势的原因。 […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español