制造过程通常会在产品表面留下不规则的纹理。随着对高质量饰面的需求不断增长,表面饰面的重要性变得越来越重要。表面处理不仅仅是为了美观或实现更光滑的外观;它显着影响产品的功能、耐用性和整体性能。
浏览我们的指南,了解有关表面精加工的所有信息,并获取有关实现所需光洁度和选择合适的表面粗糙度的提示 数控加工。
表面光洁度,也称为表面纹理或表面形貌,是指零件表面的整体光滑度、纹理和质量。它是制造和工程中的一个重要因素,因为它不仅影响产品的外观,还影响产品的性能和功能。
表面光洁度的关键特征主要包括以下三个方面:

表面粗糙度
表面粗糙度是指表面上微小的、精细间隔的不规则性,肉眼可能看不到,但用手指抚过表面时可以感觉到。
粗糙度通常使用 Ra(平均粗糙度)等参数来测量。 Ra 值越低,表示不规则现象越少越小,从而形成更光滑的表面,从而减少摩擦和磨损。当专业人士提到表面光洁度时,他们通常特指表面粗糙度。
波纹度
波纹度与表面粗糙度不同,因为它包含表面上更大、间隔更宽的不规则性。这些可能是由制造过程中的机器振动、变形或翘曲等因素引起的。表面波纹度会显着影响零件的装配方式及其密封能力。
Lay(表面图案方向)
捻向是表面图案的主要方向,通常由所使用的制造工艺产生,并且可以是平行的、垂直的、圆形的、交叉阴影的、径向的、多方向的或各向同性的(非方向的)。
捻向影响摩擦、润滑和美观。在光学元件中,特定的铺设方向可以减少光散射并提高清晰度。

如前所述,表面光洁度显着影响产品的外观、性能、耐用性和整体质量。这正是表面光洁度在制造过程中发挥重要作用的原因。下面我们来分析一下表面光洁度如此重要的原因。
美观:产品的第一印象通常基于其外观和触觉。高质量的表面光洁度可增强视觉吸引力,并可显着影响您的感知和满意度,尤其是消费品。
摩擦和磨损:特别是在机械应用中,更光滑的表面光洁度可减少运动部件之间的摩擦和磨损,从而最大限度地减少热量产生并提高部件的效率和使用寿命。
密封和装配:适当的表面光洁度可确保零件更好的密封和装配,防止泄漏并确保精确装配。
疲劳强度:更光滑的表面可以通过减少应力集中和裂纹萌生的可能性来提高疲劳强度。
耐腐蚀性:更好的表面光洁度可以最大限度地减少腐蚀剂积聚的缝隙,从而增强耐腐蚀性。
涂层的附着力:表面纹理会影响涂层或油漆对产品的附着力。
提高导电性和散热性:在电子和热应用中,高质量的表面光洁度可增强导电性并有助于散热。
控制光反射和散射:在光学应用中,表面光洁度会影响光的反射和散射方式。
鉴于表面光洁度对制造的关键影响,测量表面粗糙度在生产过程中至关重要。这使我们能够准确了解产品的实际表面特性,确保它们满足设计和功能要求。
测量表面粗糙度涉及使用各种测量技术和数据分析来评估产品表面轮廓的相对平滑度。量化粗糙度最常用的数值参数是 Ra。
有多种方法可用于测量表面粗糙度。测量技术的主要类型包括:

接触方法涉及使用工具(例如触针式探针仪器)物理接触表面。该装置相对于表面铺设方向垂直移动以追踪表面轮廓。探头的移动生成详细的表面轮廓图,提供表面粗糙度的精确数据。
这些方法主要用于直接接触表面不会造成损坏的制造环境。然而,它们可能不适合精致或柔软的表面,这些表面可能会因探测动作而变形。

光学轮廓仪/白光干涉仪:该技术涉及将光束投射到表面上并测量反射光的图案,以准确确定表面高度变化,从而创建详细的 3D 表面轮廓。它适用于精密工程、半导体和光学行业的精致或柔软表面。然而,它需要具有良好反射性能的表面,并且设备可能很昂贵。
激光扫描共焦显微镜: 此方法使用聚焦激光光束扫描表面,生成高分辨率的地形 3D 图像。它非常适合分析生物医学研究、材料科学和精密工程中的复杂 3D 表面。然而,其成本昂贵且操作复杂。
3D 激光扫描:该技术使用激光捕获表面的形貌并创建 3D 模型。它通常用于较大的表面,可以快速生成全面的表面轮廓。它适用于汽车、航空航天和建筑应用中的大型或复杂表面。虽然它可以有效地处理大面积,但与其他方法相比,它的分辨率较低,并且不适合高精度测量或非常小的表面特征。

比较方法涉及将所讨论的表面与具有已知粗糙度的一组标准样品进行比较。
这些方法快速且经济高效,适合生产环境中的例行检查。然而,它们更加主观,不太适合需要高精度的应用。
过程中方法将表面粗糙度测量直接集成到制造过程中。使用在线轮廓仪或数控机床中的集成传感器等工具。这些工具提供表面光洁度的实时数据,以便立即进行调整。
这种方法对于连续生产线和自动化制造系统中的实时监控和质量控制特别有用。然而,在由于空间、成本或复杂性限制而无法将测量系统集成到过程中的情况下,它可能会受到限制。
对于上述所有测量方法,请在记录时注明测量单位。在美国,粗糙度测量使用微英寸,通常写作 µin,而国际上使用千分尺 (SI),写作 µm 或 um。这是一个简短的转换:

如果不理解上面表面粗糙度表中的符号和参数,我们就会在复杂的制造领域无所适从。这些指标就像地图上的标记,指导我们确保表面的质量、功能和适用性满足预期。
Ra:平均粗糙度

Ra 定义为粗糙度轮廓相对于平均线的平均变化。用数学术语来说,它是在评估长度上从平均线测量的表面高度偏差绝对值的算术平均值。
Ra 是最常用的表面粗糙度参数,因为它提供了表面纹理的简单、一般指示,给出了整体粗糙度的平衡视图,而不会受到极端峰值或谷值的过度影响。

其中:L是测量长度。y(x) 是表面轮廓上给定点到中线的垂直距离。
由于这种平均化,Ra 值低于粗糙度变化的实际高度。
Rz:平均最大高度

为了计算 Rz,将评估长度分为五个相等的长度。 Rz 是这五个相等采样长度中每个采样长度内最大峰谷高度的平均值。
与 Ra 相比,Rz 提供了更详细的表面粗糙度表示,并且对表面轮廓的峰和谷更敏感。它通常用于极端表面纹理至关重要的行业,例如密封表面,其中最高的峰和最深的谷会影响密封件和垫圈的性能。
实际上,为了方便起见,有时使用近似公式“7.2×Ra=Rz”。然而,这是一个粗略的估计,并不总是准确的。
Rp:最大轮廓峰高
Rp 是从评估长度内的平均线测量的表面轮廓中最高单峰的高度。
Rv:最大剖面谷深
Rv 是在评估长度内从平均线测量的表面轮廓中最深的单个谷的深度。
Rt:总粗糙度
Rt是整个评估长度内最高峰和最低谷之间的总垂直距离。
它对于整体质量控制和确保表面没有极端偏差很有用。
Rmax:最大粗糙度深度
Rmax是评估长度内的最大峰谷高度。它着眼于各个段内的最大峰谷差,然后选择这些段中的最大值。
Rmax 专注于最重要的局部粗糙度,适用于需要更严格控制表面特定区域的应用,例如关键密封或接触表面。
RMS:均方根粗糙度
RMS,也称为 Rq,是评估长度上表面高度与平均线偏差的均方根平均值。与 Ra 相比,它对较大偏差给予更多权重,对于对较大表面变化敏感的应用特别有用,例如精密工程和光学应用。

其中:Rq 是 RMS 粗糙度值。L 是测量长度。y(x) 是垂直方向表面轮廓上的一点到中线的距离。
粗糙度符号可以作为复选标记,其点为标记停留在要指定的表面上。请参阅下表了解更多说明。

在实践中,从原材料到具体加工工艺的选择,甚至刀具条件、加工参数等加工条件,都会极大地影响零件的表面质量。在加工材料确定的情况下,为了获得理想的表面光洁度,可以从以下几个方面考虑:

值得一提的是,由于额外的加工和更光滑的表面会产生额外的成本,因此工程师或设计师不要强加不必要的严格粗糙度要求,这一点至关重要。只要有可能,粗糙度规格应在主要制造工艺的限制范围内设定。
如前面提到的表面粗糙度比较图所示,CNC 加工可以产生非常广泛的表面粗糙度。那么,什么样的表面粗糙度最适合您的项目呢?让我们来看看吧。
| 近似表面粗糙度换算表 | ||||
| 粗糙度等级数字 | 美国系统 - Ra (μin) | 美国系统 - RMS(微英寸) | 公制 - Ra (μm) | 公制 - RMS (µm) |
| N12 | 2000年 | 2200 | 50 | 55 |
| N11 | 1000 | 1100 | 25 | 27.5 |
| N10 | 500 | 550 | 12.5 | 13.75 |
| N9 | 250 | 275 | 8.3 | 9.13 |
| N8 | 125 | 137.5 | 3.2 | 3.52 |
| N7 | 63 | 69.3 | 1.6 | 1.76 |
| N6 | 32 | 35.2 | 0.8 | 0.88 |
| N5 | 16 | 17.6 | 0.4 | 0.44 |
| N4 | 8 | 8.8 | 0.2 | 0.22 |
| N3 | 4 | 4.4 | 0.1 | 0.11 |
| 氮气 | 2 | 2.2 | 0.05 | 0.055 |
| N1 | 1 | 1.1 | 0.025 | 0.035 |
上图中,ISO 1302 指示不同级别的表面粗糙度。以下是 CNC 加工的一些典型粗糙度等级:
Ra 3.2 µm (N8)
Ra 3.2 µm 表面光洁度呈现出适度光滑的表面,通常用作商用机械的标准。这种表面光洁度虽然留下可见但不会过多的切割痕迹,但对于大多数消费部件来说是可以接受的,并且为许多应用提供了足够光滑的表面。
Ra 1.6 µm (N7)
Ra 1.6 µm 表面光洁度代表相对光滑的表面,具有几乎不易察觉的最小切割痕迹。这种表面处理适用于缓慢移动和轻度承载的表面,是泵部件和液压部件的理想选择。
Ra 0.8 µm (N6)
Ra 0.8 µm 表面光洁度意味着表面极其光滑和精确。它是许多精密工程应用的标准,例如航空航天和汽车零部件。
Ra 0.4 µm (N5)
Ra 0.4 µm 表面光洁度提供几乎镜面般的光洁度。这种级别的平滑度需要付出巨大的努力才能实现,并且只有当它是首要任务时才应提出要求。它用于光学元件、科学仪器和其他高精度应用。
表面光洁度是制造的一个组成部分,直接受到所使用的工艺的影响。它显着影响最终产品的功能、美观和耐用性。然而,需要注意的是,表面粗糙度并不总是越低越好,必须考虑实际使用和预算。
作为一站式加工制造商,志高不仅采用一系列制造工艺和表面处理服务来达到严格的表面光洁度标准,而且提供适合您特定项目需求的经济高效的解决方案。
要点:
想象一下,将您最喜欢的咖啡杯放在厨房的地板上 - 它变成锋利的碎片。现在,秋天后,想象一下智能手机屏幕蜘蛛网,或地震期间未增强的混凝土墙破裂。这些日常示例突出了脆性,这是一种物质属性,可以导致突然破裂而不会警告。 Brittlenes对安全性和可靠性至关重要:建筑物,桥梁或产品中的脆性组件如果不考虑灾难性的情况。历史提供了鲜明的提醒 - 最著名的是RMS泰坦尼克号,其钢铁在冰冷的大西洋水域变得脆弱,并在撞击而不是弯曲方面破裂,导致了灾难。工程师和设计师密切关注Brittleness,因为与弯曲或伸展的延性材料不同,脆性易碎的材料往往会在压力下折断。 这篇文章探讨了什么是脆性以及它与硬度和韧性的不同。它还解释了为什么玻璃或铸铁等材料是脆性的,以及我们如何测试和减轻工程设计中的脆性。 什么是脆性? 材料科学中的脆弱性是指材料事先几乎没有塑性变形的材料倾向的趋势。简而言之,脆性材料不会弯曲或伸展太多 - 它会破裂。如果您尝试弯曲脆性物体,它几乎会立即破裂或捕捉,而不是经历塑性变形。这是相反的延性,在失败之前,材料维持明显的塑性变形(例如,将其吸引到电线或弯曲中)的能力。高度延展的金属(例如铜或金)可以大量弯曲,拉伸或抽出,而在仅弹性菌株后,脆性材料(例如玻璃或陶瓷)骨折。 脆性,韧性,韧性和硬度 比较脆性和延展性归结于材料在骨折前可以变形的材料多少。脆性材料的延展性很低,并在小应变下达到其断裂点。延性的一个可以维持明显的塑性变形。在金属中,一个共同的经验法则是,休息时的伸长率通常称为脆,而考虑〜5%延性(材料和测试依赖性;陶瓷和玻璃通常远低于1%)。实际上,脆性材料几乎没有发出警告 - 在折断之前,它们不会明显弯曲或脖子。在应力 - 应变曲线,延性材料显示出屈服和较长的塑料区域,而脆性材料几乎是线性弹性的,直到突然裂缝具有最小的可塑性。 韧性描述材料在破裂前吸收的能量(思考:应力 - 应变曲线下的区域)。当材料结合高强度和良好的延展性时,通常会增加。这不是严厉的“相反”。橡胶轮胎很艰难,因为它会变形并吸收影响。退火玻璃很脆,因为它不能塑料变形,因此急剧的打击会使它破裂。 硬度是一个不同的概念 - 它抵抗刮擦和局部凹痕。材料可能非常困难但脆弱。例如,钻石抵制刮擦,但缺乏可塑性,可以在急剧的打击下切碎或劈开。相反,相对柔软的东西(例如橡胶)可以抵抗撞击的破裂,因为它会变形。简而言之,硬度涉及对局部变形的抵抗力,而残酷的性质描述了断裂行为。 易碎材料的示例及其失败 许多日常和工业材料表现出脆弱的行为。以下是一些例子,以及它们如何在压力下失败: 玻璃:普通玻璃(例如窗玻璃或水杯)是一种经典的脆性材料。它在压缩方面非常坚固且强烈,但是在拉伸应力或影响下,它不能塑性变形。将玻璃杯放在坚硬的地板上,通常会碎裂大而尖锐的碎片。故障是通过裂纹传播的:一旦一个微小的缺陷或冲击点会引发裂缝,它就会穿过玻璃,几乎没有塑性变形。这种脆性来自其结构:二氧化硅网络是刚性和无定形的,与金属不同,没有移动位错来缓解压力。有趣的是,特殊治疗可以改变玻璃断裂的方式,例如,通过热处理以引入表面压力应力而产生的钢化玻璃,仍然很脆,但往往会分解成小钝骰子样的碎片(因此“安全玻璃”)。层压玻璃,用于挡风玻璃,将两个玻璃杯粘合到塑料层中(通常是PVB),因此,当裂缝形成裂缝时,层中层将碎片将碎片固定在一起。这些治疗方法可以减轻故障模式,但从根本上讲,玻璃通过破裂而不是弯曲而失败。 陶瓷:陶瓷同样脆弱。从架子上敲出陶瓷花瓶,它会碎片或破碎而不是凹痕。从结构上讲,陶瓷是离子和/或共价键合的,通常是多晶(瓷器也包含玻璃相)。例如,在瓷板中,原子晶格是刚性的。当压力时,原子飞机无法轻易滑落。在离子固体中,一个小移位带来了同样的带电离子并排,它们强烈排斥,裂纹引发。由于位错运动是有限的,键是定向的,因此陶瓷具有高硬度和抗压强度,但倾向于在张力或弯曲下折断。当它们失败时,裂缝表面通常会清洁并沿晶体平面(裂解)。陶瓷瓷砖超出其容量超出其容量的裂纹,可以通过身体传播,并用干净的玻璃状断裂破裂,几乎没有可见的屈服。 铸铁(尤其是灰色铸铁):铸铁是一种金属,但某些成绩却是脆弱的。如果您曾经看过旧的铸铁发动机块或铸铁管道裂缝,则目睹了易碎的断裂。灰色铸铁(以其断裂表面的灰色命名)具有相对较高的碳含量。碳形成石墨片,分布在整个铁基质中。这些薄片的行为就像内部裂缝和强烈的压力集中器,因此金属在破裂之前不会伸展太多。结果,铸铁在压缩方面非常强(均匀支撑时),但在张力或影响不足可能会突然失败。相比之下,延性(结节性)铁是一种改良的铸铁,在该铸铁中诱导石墨形成球形结节(通常是通过镁处理)。它的脆性要小得多,并且会在影响下变形,而不是破碎。我们将在“设计”部分中进一步讨论。 具体的:混凝土看起来像是坚固且岩石状的(而且是),但这是脆弱材料的另一个例子。在压缩下,混凝土非常强大,可以承受很大的负载。但是,在张力(拉或弯曲)下,纯混凝土裂缝很容易。水泥糊和硬矿物聚集体的混合物形成了具有非常有限的塑料流能力的刚性基质,因此很小的拉伸菌株开放的微裂纹可以迅速合并。这就是为什么钢筋混凝土如此普遍的原因:钢钢筋嵌入以携带张力并增加延展性(和韧性)。钢可以屈服和伸展,将截面保持在一起并提供警告(裂缝形成并逐渐扩大),而不是突然的脆性崩溃。 其他脆性材料:还有许多其他例子。如果不调和,高碳或高度硬化的工具钢可能会变脆。文件或非常坚硬的刀片可能会在弯曲时捕捉,因为更高的碳和硬度可减少延展性。石墨,就像铅笔“铅”一样脆弱:其分层结构使飞机滑动留下标记,但在适度的力下,棍子很容易折断。有些聚合物也很脆。聚苯乙烯(用于一次性餐具和旧CD案例中的刚性塑料)倾向于捕捉而不是弯曲。 为什么有些材料脆弱? 要了解脆性,它有助于查看微观和原子尺度上的材料内发生的情况。材料的原子键和微观结构有所不同,这些差异决定了它们对压力的反应。 在结晶金属中,定位的金属键合和移动位错通常会造型流动。当滑动很容易时,应力再分配和裂纹尖端会钝化。如果粘结是高度定向的,或者晶体几乎没有可操作的滑动系统,则可塑性受到限制;应力集中到裂纹成核并繁殖。 然后,微观结构决定裂纹的生长是如何生长的。尖锐的夹杂物,硬第二阶段,毛孔或弱接口充当裂纹的发射地点和途径。温度和应变速率也很重要:较低的温度或更高的应变速率降低了可塑性,将行为推向脆性断裂。环境可以使平衡 - 原子氢加速裂纹,而晶粒结合的降解(例如晶间腐蚀或杂质隔离)可降低沿边界的凝聚力。 简而言之,当塑料适应不足并占主导地位时,勃彩会出现。如果材料无法自由移动脱位或在裂纹尖端下消散能量,则失败是突然的,几乎没有警告。 如何测量或测试脆性? 由于Brittlense是关于材料在压力下的行为(几乎没有变形),因此没有一个“勃贴”数字,您可以像密度或熔点一样抬头。取而代之的是,工程师使用延展性,断裂韧性和影响能量的测试间接表征它。 衡量脆性行为的标准方法之一是拉伸测试。在记录压力和应变时,拉动狗骨标本,以产生应力 - 应变曲线。脆性反应是几乎线性的突然断裂的弹性途径,几乎没有或没有产量区域。两个快速指示器(突破时的延长和降低面积)是延展性的度量(并成反比)。脆性的材料将显示出低伸长率和最小的面积减少(颈部很少或没有颈部)。对于金属,测试设置和报告遵循ASTM E8。 在Charpy V-Notch撞击测试中,摇摆的摆板击中了一个缺口的杆,并且在焦耳的能量中记录了摆能量的损失(来自秋千高度的变化)(j)。低吸收能表示脆弱的反应。高能量表示韧性。由于结果取决于标本的大小和缺口几何形状,因此最好将夏普能量用于比较和温度研究,而不是基本材料常数。在多个温度下进行测试映射延性到脆性的过渡。工程师还阅读了断裂表面:明亮,刻面/裂解特征表明脆性断裂,而暗淡,纤维状的外观表示延性断裂。 另一个关键措施是平面应变骨折韧性(K我知道了),一种骨折的机电参数,可量化材料对裂纹生长的抗性。它是根据预先裂纹标本的精确测试确定的,代表裂纹开始延伸的临界应力强度因子。脆性材料有低k我知道了因此,缺陷差 - 小裂纹会在相对较低的压力下导致失败,而坚韧的延性材料具有较高的k我知道了并且可以直言不讳或逮捕裂缝。工程师使用裂缝 - 阻力数据来设置允许的缺陷大小,并针对服务突然断裂进行设计。 如何防止设计中的脆弱失败 由于脆弱性会导致突然的灾难性失败,因此工程师已经制定了处理策略 - 通过选择不同的材料或修改材料和设计以使脆弱行为降低危险性。 材料选择和处理 […]
在为特定应用选择坚固的金属材料时,钛和钢通常被认为是首选。除了强度差异之外,每种金属还具有独特的性能,使其适用于各种用途。哪一种是您项目的正确选择?本文将概述这两种金属并比较它们的主要特性。让我们开始吧。
铜、黄铜和青铜通常被归类为有色金属,属于同一类红色金属。它们均具有耐腐蚀、高导电/导热性和可焊接性等特点,使其广泛应用于建筑、电子、艺术品、机械等行业。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español