制造过程通常会在产品表面留下不规则的纹理。随着对高质量饰面的需求不断增长,表面饰面的重要性变得越来越重要。表面处理不仅仅是为了美观或实现更光滑的外观;它显着影响产品的功能、耐用性和整体性能。
浏览我们的指南,了解有关表面精加工的所有信息,并获取有关实现所需光洁度和选择合适的表面粗糙度的提示 数控加工。
表面光洁度,也称为表面纹理或表面形貌,是指零件表面的整体光滑度、纹理和质量。它是制造和工程中的一个重要因素,因为它不仅影响产品的外观,还影响产品的性能和功能。
表面光洁度的关键特征主要包括以下三个方面:
表面粗糙度
表面粗糙度是指表面上微小的、精细间隔的不规则性,肉眼可能看不到,但用手指抚过表面时可以感觉到。
粗糙度通常使用 Ra(平均粗糙度)等参数来测量。 Ra 值越低,表示不规则现象越少越小,从而形成更光滑的表面,从而减少摩擦和磨损。当专业人士提到表面光洁度时,他们通常特指表面粗糙度。
波纹度
波纹度与表面粗糙度不同,因为它包含表面上更大、间隔更宽的不规则性。这些可能是由制造过程中的机器振动、变形或翘曲等因素引起的。表面波纹度会显着影响零件的装配方式及其密封能力。
Lay(表面图案方向)
捻向是表面图案的主要方向,通常由所使用的制造工艺产生,并且可以是平行的、垂直的、圆形的、交叉阴影的、径向的、多方向的或各向同性的(非方向的)。
捻向影响摩擦、润滑和美观。在光学元件中,特定的铺设方向可以减少光散射并提高清晰度。
如前所述,表面光洁度显着影响产品的外观、性能、耐用性和整体质量。这正是表面光洁度在制造过程中发挥重要作用的原因。下面我们来分析一下表面光洁度如此重要的原因。
美观:产品的第一印象通常基于其外观和触觉。高质量的表面光洁度可增强视觉吸引力,并可显着影响您的感知和满意度,尤其是消费品。
摩擦和磨损:特别是在机械应用中,更光滑的表面光洁度可减少运动部件之间的摩擦和磨损,从而最大限度地减少热量产生并提高部件的效率和使用寿命。
密封和装配:适当的表面光洁度可确保零件更好的密封和装配,防止泄漏并确保精确装配。
疲劳强度:更光滑的表面可以通过减少应力集中和裂纹萌生的可能性来提高疲劳强度。
耐腐蚀性:更好的表面光洁度可以最大限度地减少腐蚀剂积聚的缝隙,从而增强耐腐蚀性。
涂层的附着力:表面纹理会影响涂层或油漆对产品的附着力。
提高导电性和散热性:在电子和热应用中,高质量的表面光洁度可增强导电性并有助于散热。
控制光反射和散射:在光学应用中,表面光洁度会影响光的反射和散射方式。
鉴于表面光洁度对制造的关键影响,测量表面粗糙度在生产过程中至关重要。这使我们能够准确了解产品的实际表面特性,确保它们满足设计和功能要求。
测量表面粗糙度涉及使用各种测量技术和数据分析来评估产品表面轮廓的相对平滑度。量化粗糙度最常用的数值参数是 Ra。
有多种方法可用于测量表面粗糙度。测量技术的主要类型包括:
接触方法涉及使用工具(例如触针式探针仪器)物理接触表面。该装置相对于表面铺设方向垂直移动以追踪表面轮廓。探头的移动生成详细的表面轮廓图,提供表面粗糙度的精确数据。
这些方法主要用于直接接触表面不会造成损坏的制造环境。然而,它们可能不适合精致或柔软的表面,这些表面可能会因探测动作而变形。
光学轮廓仪/白光干涉仪:该技术涉及将光束投射到表面上并测量反射光的图案,以准确确定表面高度变化,从而创建详细的 3D 表面轮廓。它适用于精密工程、半导体和光学行业的精致或柔软表面。然而,它需要具有良好反射性能的表面,并且设备可能很昂贵。
激光扫描共焦显微镜: 此方法使用聚焦激光光束扫描表面,生成高分辨率的地形 3D 图像。它非常适合分析生物医学研究、材料科学和精密工程中的复杂 3D 表面。然而,其成本昂贵且操作复杂。
3D 激光扫描:该技术使用激光捕获表面的形貌并创建 3D 模型。它通常用于较大的表面,可以快速生成全面的表面轮廓。它适用于汽车、航空航天和建筑应用中的大型或复杂表面。虽然它可以有效地处理大面积,但与其他方法相比,它的分辨率较低,并且不适合高精度测量或非常小的表面特征。
比较方法涉及将所讨论的表面与具有已知粗糙度的一组标准样品进行比较。
这些方法快速且经济高效,适合生产环境中的例行检查。然而,它们更加主观,不太适合需要高精度的应用。
过程中方法将表面粗糙度测量直接集成到制造过程中。使用在线轮廓仪或数控机床中的集成传感器等工具。这些工具提供表面光洁度的实时数据,以便立即进行调整。
这种方法对于连续生产线和自动化制造系统中的实时监控和质量控制特别有用。然而,在由于空间、成本或复杂性限制而无法将测量系统集成到过程中的情况下,它可能会受到限制。
对于上述所有测量方法,请在记录时注明测量单位。在美国,粗糙度测量使用微英寸,通常写作 µin,而国际上使用千分尺 (SI),写作 µm 或 um。这是一个简短的转换:
如果不理解上面表面粗糙度表中的符号和参数,我们就会在复杂的制造领域无所适从。这些指标就像地图上的标记,指导我们确保表面的质量、功能和适用性满足预期。
Ra:平均粗糙度
Ra 定义为粗糙度轮廓相对于平均线的平均变化。用数学术语来说,它是在评估长度上从平均线测量的表面高度偏差绝对值的算术平均值。
Ra 是最常用的表面粗糙度参数,因为它提供了表面纹理的简单、一般指示,给出了整体粗糙度的平衡视图,而不会受到极端峰值或谷值的过度影响。
其中:L是测量长度。y(x) 是表面轮廓上给定点到中线的垂直距离。
由于这种平均化,Ra 值低于粗糙度变化的实际高度。
Rz:平均最大高度
为了计算 Rz,将评估长度分为五个相等的长度。 Rz 是这五个相等采样长度中每个采样长度内最大峰谷高度的平均值。
与 Ra 相比,Rz 提供了更详细的表面粗糙度表示,并且对表面轮廓的峰和谷更敏感。它通常用于极端表面纹理至关重要的行业,例如密封表面,其中最高的峰和最深的谷会影响密封件和垫圈的性能。
实际上,为了方便起见,有时使用近似公式“7.2×Ra=Rz”。然而,这是一个粗略的估计,并不总是准确的。
Rp:最大轮廓峰高
Rp 是从评估长度内的平均线测量的表面轮廓中最高单峰的高度。
Rv:最大剖面谷深
Rv 是在评估长度内从平均线测量的表面轮廓中最深的单个谷的深度。
Rt:总粗糙度
Rt是整个评估长度内最高峰和最低谷之间的总垂直距离。
它对于整体质量控制和确保表面没有极端偏差很有用。
Rmax:最大粗糙度深度
Rmax是评估长度内的最大峰谷高度。它着眼于各个段内的最大峰谷差,然后选择这些段中的最大值。
Rmax 专注于最重要的局部粗糙度,适用于需要更严格控制表面特定区域的应用,例如关键密封或接触表面。
RMS:均方根粗糙度
RMS,也称为 Rq,是评估长度上表面高度与平均线偏差的均方根平均值。与 Ra 相比,它对较大偏差给予更多权重,对于对较大表面变化敏感的应用特别有用,例如精密工程和光学应用。
其中:Rq 是 RMS 粗糙度值。L 是测量长度。y(x) 是垂直方向表面轮廓上的一点到中线的距离。
粗糙度符号可以作为复选标记,其点为标记停留在要指定的表面上。请参阅下表了解更多说明。
在实践中,从原材料到具体加工工艺的选择,甚至刀具条件、加工参数等加工条件,都会极大地影响零件的表面质量。在加工材料确定的情况下,为了获得理想的表面光洁度,可以从以下几个方面考虑:
值得一提的是,由于额外的加工和更光滑的表面会产生额外的成本,因此工程师或设计师不要强加不必要的严格粗糙度要求,这一点至关重要。只要有可能,粗糙度规格应在主要制造工艺的限制范围内设定。
如前面提到的表面粗糙度比较图所示,CNC 加工可以产生非常广泛的表面粗糙度。那么,什么样的表面粗糙度最适合您的项目呢?让我们来看看吧。
近似表面粗糙度换算表 | ||||
粗糙度等级数字 | 美国系统 - Ra (μin) | 美国系统 - RMS(微英寸) | 公制 - Ra (μm) | 公制 - RMS (µm) |
N12 | 2000年 | 2200 | 50 | 55 |
N11 | 1000 | 1100 | 25 | 27.5 |
N10 | 500 | 550 | 12.5 | 13.75 |
N9 | 250 | 275 | 8.3 | 9.13 |
N8 | 125 | 137.5 | 3.2 | 3.52 |
N7 | 63 | 69.3 | 1.6 | 1.76 |
N6 | 32 | 35.2 | 0.8 | 0.88 |
N5 | 16 | 17.6 | 0.4 | 0.44 |
N4 | 8 | 8.8 | 0.2 | 0.22 |
N3 | 4 | 4.4 | 0.1 | 0.11 |
氮气 | 2 | 2.2 | 0.05 | 0.055 |
N1 | 1 | 1.1 | 0.025 | 0.035 |
上图中,ISO 1302 指示不同级别的表面粗糙度。以下是 CNC 加工的一些典型粗糙度等级:
Ra 3.2 µm (N8)
Ra 3.2 µm 表面光洁度呈现出适度光滑的表面,通常用作商用机械的标准。这种表面光洁度虽然留下可见但不会过多的切割痕迹,但对于大多数消费部件来说是可以接受的,并且为许多应用提供了足够光滑的表面。
Ra 1.6 µm (N7)
Ra 1.6 µm 表面光洁度代表相对光滑的表面,具有几乎不易察觉的最小切割痕迹。这种表面处理适用于缓慢移动和轻度承载的表面,是泵部件和液压部件的理想选择。
Ra 0.8 µm (N6)
Ra 0.8 µm 表面光洁度意味着表面极其光滑和精确。它是许多精密工程应用的标准,例如航空航天和汽车零部件。
Ra 0.4 µm (N5)
Ra 0.4 µm 表面光洁度提供几乎镜面般的光洁度。这种级别的平滑度需要付出巨大的努力才能实现,并且只有当它是首要任务时才应提出要求。它用于光学元件、科学仪器和其他高精度应用。
表面光洁度是制造的一个组成部分,直接受到所使用的工艺的影响。它显着影响最终产品的功能、美观和耐用性。然而,需要注意的是,表面粗糙度并不总是越低越好,必须考虑实际使用和预算。
作为一站式加工制造商,志高不仅采用一系列制造工艺和表面处理服务来达到严格的表面光洁度标准,而且提供适合您特定项目需求的经济高效的解决方案。
要点:
3D打印和CNC加工之间的最大区别在于,一种方法是按一层构建零件,而另一个方法是通过删除材料来制造的。如果您发现自己在CNC加工和产品的3D打印之间进行选择,请继续阅读以了解更多信息。
当工程师谈论“压力”时,它们的意思与考试焦虑或工作压力截然不同。在这里,压力是材料中每单位区域的内力。伸展橡皮筋或在拔河船上拉绳子,您会看到拉伸压力在作用中,这种压力使材料在负载下伸长。 在本文中,我们解释了什么是拉伸应力,它与压力应力和拉伸强度,关键公式以及chiggo如何将这些考虑因素纳入现实世界制造业的方式有何不同。 什么是拉伸压力? 拉伸压力描述了当您尝试将其拉开时材料的反应。它导致材料沿施加载荷的轴伸长。正式地,它被定义为施加的力除以垂直于该力的横截面区域。 拉伸应力与压力应力 拉伸应力与压缩应力相反。当力起作用伸展或延长物体时,会发生拉伸应力,而当力挤压或缩短后,会发生压力。想象一下坚固的金属条:两端拉动,并且会遇到拉伸压力,略微拉长。将两端推动,好像试图沿其长度粉碎它,并且棒会遇到压力,缩短或凸起。 这些应力也可以同时在结构的不同部分发生。例如,当人或机器在混凝土地板板上移动时,平板的顶部表面被推入压缩,而底部表面则以张力拉伸。如果底部的拉伸应力太高,则可能会出现裂缝 - 这就是为什么工程师将钢筋放在那里抵抗张力的原因。 拉伸应力与拉伸强度 拉伸应力材料在给定时刻所经历的负载是每单位面积的力。它会根据施加力而升高和下降。抗拉强度相比之下,是固定材料的特性,它是材料在产生或断裂之前可以应付的最大拉伸压力。 实际上,工程师不断比较两者。如果零件中的实际拉伸应力保持在其拉伸强度以下,则该零件将略微伸展但保持完整。如果压力超过强度,则会发生故障。这就是为什么设计始终包括安全余量,确保现实压力远低于所选材料的已知强度的原因。 拉伸应力公式 拉伸时,拉伸应力在其拉伸时测量内力。它以一个简单的公式计算: σ= f / a 在哪里: σ=拉伸应力(在Pascals,MPA或PSI中) F =施加力(纽顿或磅) a =横截面区域(以mm²或英寸为单位) 这个方程告诉我们拉力的集中力量。较高的负载或较小的横截面会产生较高的应力。例如,悬浮在细线上的相同重量会产生比厚电缆上的压力要大得多。这就是为什么工程师大小的电缆,杆或横梁以保持压力远低于所使用材料的安全限制的原因。 但是,尽管这种公式给了我们压力的数值,但并未揭示材料本身将如何响应。它会突然突然折断,永久弯曲还是弹簧回到原始形状?为了回答这一点,工程师依靠压力 - 应变曲线。 了解应力应变曲线 为了创建应力 - 应变曲线,将测试标本(通常是Dogbone形)放置在拉伸测试机中。机器握住各端,并逐渐将它们拉开,将样品拉伸至破裂。在此过程中,连续测量施加的应力和所得应力(相对于原始长度的长度变化)。 将结果用X轴的应变绘制,并在Y轴上的应力。在此曲线上,可以识别几个关键点: 弹性区域 起初,压力和应变是成比例的。这是弹性区域,其中胡克定律适用(σ=e猛)。该线性部分的斜率是弹性模量(Young的模量),一种刚度的度量。在该区域中,一旦卸下负载,材料将返回其原始形状。 产量点 随着加载的增加,曲线从直线偏离。这是产量点,弹性行为结束,塑性(永久)变形开始。除此之外,即使卸下负载,材料也不会完全恢复其原始形状。 终极拉伸强度(UTS) 曲线持续向上进入塑料区域,达到峰值。这个最高点是最终的拉伸强度(UTS),它代表材料在颈部(局部变薄)开始之前承受的最大压力。 断裂点 在UTS之后,曲线随着样品颈的倾斜而向下倾斜,无法再承担那么多的负载。最终,材料在断裂点断裂。对于延性材料,由于颈部,骨折的应力通常低于UTS。对于脆性材料,裂缝可能会突然发生在弹性极限附近,而塑性变形很小。 拉伸压力的实际应用 在材料被拉,悬挂或拉伸的任何情况下,拉伸压力决定了它是否可以安全地承担负载或是否会失败。以下是一些关键应用程序和示例: 桥梁和建筑 想想悬挂桥,例如金门桥 - 悬挂在塔之间的巨大钢电缆处于恒定的拉伸压力下,支撑道路和车辆的重量。工程师为这些电缆选择高强度的钢,以便他们可以处理重负荷以及诸如风或地震等额外的力量而不会失败。现代建筑也巧妙地使用了紧张。例如,在预应力的混凝土中,钢质肌腱被嵌入并拉伸,以便梁可以安全地处理载荷。 电缆,绳索和链条 许多日常系统还直接依赖拉伸压力。以电梯为例:其钢电缆处于恒定的张力,不仅承载汽车的重量,而且还带有加速或停止时的额外力。起重机以相同的原理运行,使用高应答电缆安全地抬起和移动重载。即使在像吉他这样简单的东西中,拉伸压力也会发挥作用 - 越紧手起来钉子,琴弦的张力越大,这会使音高提高,直到推到太远的话,琴弦最终会破裂。 机器和螺栓 在机械工程中,拉伸应力同样重要。通过稍微拉伸飞机或汽车发动机工作中的螺栓和螺钉 - 由此产生的拉伸应力会产生将零件固定在一起的夹紧力。如果螺栓的压力过高(拧紧时扭矩过多或使用过多的负载),它可能会产生和失败,可能导致机器分开。这就是为什么螺栓通过表明其产量和拉伸强度的等级进行评分的原因,以及为什么将临界螺栓拧紧到指定的紧张局势的原因。 […]
卡扣接头是使用互锁功能连接两个或多个部件的紧固机构。它们是最有效、最简单的零件组装方法之一,常见于我们周围的日常用品中,例如塑料瓶盖、电池盖、智能手机外壳、笔盖、食物储存盖和许多塑料玩具零件。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español