在塑料制造,热塑料和热固性是两种主要类型的塑料材料,通常用于注射成型, cnc加工 3D打印和挤出。两者都是由聚合物制成的,这些聚合物由分子的长链组成。在显微镜下,热塑性塑料看起来像是纠结的自由流动绳索,而热固件类似于紧密编织的网络。聚合物的结构直接影响了性能和性能。热塑性塑料和热眠器之间的主要区别在于它们对热量的反应。除此之外,他们还有许多其他差异。阅读,您会在本文中找到有关它们的更多详细信息。


热塑性塑料是在室温下固体的树脂。加热时,由于晶体熔化或越过玻璃过渡温度,颗粒会变软并最终变为流体。冷却后,它们将其变硬成所需的形状,而无需进行化学键合。这使得热塑性塑料可以轻松地重新加热,重塑和回收多次,而无需进行任何永久性化学变化。
它们通常倾向于抵抗收缩并提供良好的强度和弹性。它们基于它们的分子结构将其分为两种类型:
热塑性塑料通常用于注射成型,挤出,热形式,吹塑,旋转成型以及许多其他制造技术。一些常用的热塑性塑料包括:

热固性(或热固性塑料)是一种聚合物,通常在室温下以液体树脂(或偶尔作为柔软的固体)存在。当加热或与催化剂混合时,它会经历形成不可逆,刚性,交联的结构的固化过程。这种永久性结构使热固性对热的耐热性,增强的耐腐蚀性以及对蠕变的耐药性的耐药性(在机械应力下永久变形的趋势)与热塑性塑料有关。这使得热固加工聚合物成为需要在高温下需要出色尺寸稳定性的零件,例如汽车中的进气歧管或重型机械中的制动卡钳。
但是,热固体有一些局限性。一旦治愈,它们就无法像热塑性塑料一样重新变形或重塑,并且它们往往耐火的影响较小,更容易粉碎。由于某些复合材料可以陷入填充物,但处理热固体的处理更具挑战性,因为它们不能轻易地重新处理和回收。
此外,它们的高硬度和蓬松度使表面饰面(例如抛光和磨削)和机械加工更加困难。在注射成型过程中,至关重要的是防止热固件达到其交联温度,直到完全填充模具为止,因为过早的固化会导致缺陷并阻碍适当的形状。
热固性塑料更经常出现在氨基甲酸酯铸造,压缩成型,树脂转移成型(RTM),反应注射成型(RIM)和细丝绕组中。一些常用的热眠器包括:

有数百种不同的热塑性和热固性。根据比较的特定材料,它们的性质几乎相同或大不相同。在下面的讨论中,我们将重点介绍两个类别的聚合物之间的典型差异,而不是普遍的差异。
热塑性塑料由长,线性或分支的聚合物链组成,这些链不会在化学上相互交联,形成可以是无定形或半晶的结构。这会导致相对松散的纠缠布置,从而具有灵活性和恢复。相比之下,热固体具有密集的交联网络,其中聚合物链被永久粘合。这个刚性,互锁的框架增强了热固体的耐热性和结构稳定性。
热偏转温度(HDT)测量塑料在升高温度下在负载下保持其形状的能力。该参数与材料的分子结构密切相关,将热塑性塑料与热塑性区分开。热塑性塑料(由线性或弱分支链组成)通常表现出较低的HDT值,远低于其熔点。例如,即使其熔点约为260°C,PA66尼龙在70°C和90°C之间的负载下开始变形。这种渐进的软化是由于其聚合物链的迁移率会导致,在加热时可能会彼此滑动。相反,由于它们的永久交联结构,诸如环氧树脂等热固体(例如环氧树脂)的尺寸稳定性高达200-300°C或更高。
热固性通常对化学物质,酸和碱具有卓越的抗性。他们高度交联的三维网络可最大程度地减少化学物质的渗透,从而增强了恶劣环境中的材料稳定性。尽管许多热塑性塑料(例如PVDF和PTFE)也具有良好的化学耐药性,但它们相对松散的分子结构使它们在暴露于高度腐蚀性培养基或延长的化学接触时更容易肿胀或降解。
热固性塑料具有高度稳定的结构,即使在长期暴露于高温和腐蚀性环境下,也可以提供出色的耐用性。但是,它们具有较低的韧性,并且可能在低温或高影响力负载下破裂或断裂。此外,一旦治愈,它们就无法通过加热重新处理。如果损坏,通常必须更换它们而不是修复或回收,这可以看作是某些长期应用中的限制。
相比之下,热塑料由于物理纠缠的聚合物链提供了出色的韧性和抗冲击力。这种结构允许明显的变形能力,并可以重复进行熔化和重塑以进行修复或回收。但是,它们的性能可能在持续的高温或反复的机械应力下逐渐降解。
热塑性塑料通常在颜色,透明度和细节方面具有更大的灵活性和多功能性。传统上,它们在消费产品中很受欢迎,可以实现高质量的饰面。相反,热固性塑料的重点是结构强度和耐用性。尽管它们的外观通常更固定,但轮辋和RTM流程提供了一个独特的机会来确保优越的美学。在注入热固性树脂之前,许多RIM/RTM技术允许在涂层和塑料表面之间产生强烈的粘附,从而可以在涂料和绘画之前进行内涂层和涂漆。这种牢固的纽带有助于防止诸如碎屑,剥落,破裂和其他注入成型缺陷等问题。
此外,某些热固性材料(例如环氧树脂)的粘度较低,使它们甚至可以捕获最小的美学细节,例如复杂的图案或添加徽标。这通常会产生细节详细的纹理,高光泽度和出色的视觉吸引力。
热塑性和热塑性材料均可在各种应用中有效使用。对于某些用途,一种类型的唯一属性使其成为最佳选择,而对于其他类型,两者都可以发挥相似的功能。
热塑性排放应用:
对于需要可回收性,高质量饰面和光学清晰度的应用,这些产品通常是由热塑性制造的。以下是常见用途:
热固性专用应用:
某些应用需要特殊的耐热性,尺寸稳定性以及主要由热固性提供的耐药性。其中包括:
两者都使用的应用:
热塑性塑料通常在原材料和加工方面更具成本效益。它们的配方相对简单,通常需要更少的交联剂,固化剂或其他填充剂。它们可以重新启动和重新处理,这使得生产周期较短,并支持具有相对较低工具和能量费用的大量生产。此外,任何废料材料都可以回收利用,从而进一步降低生产成本。
相比之下,热固性塑料通常具有较高的材料成本,尤其是对于环氧树脂等特种树脂。他们的处理涉及化学交联的固化步骤,化学交联需要专门的设备和模具以及更严格的过程控制。此外,一旦治愈,就无法重新加工或回收热固性,从而导致更高的物质废物和处置成本。
到目前为止,我们认为您对热塑性塑料和热固性塑料之间的差异有整体理解。这是一个简明的细分,可帮助您确定哪种材料可能是满足您需求的最佳选择:
如果:,请选择热塑性塑料
如果:
热塑性塑料与热固性塑料可快速概述聚合物基材料之间的差异。但是,有数百种单独的热塑性和热固性,每种材料具有特定的特性。因为有很多选择,因此在选择塑料之前有帮助。
Chiggo随时准备救助您。除了帮助您选择合适的塑料之外,我们还提供了强大的制造设计(DFM)建议和反馈,并可以在2周的时间内为您提供T1样本!准备开始了吗? 立即报价今天。
聚酯是热塑性或热固件?
聚酯包括不同类型的聚合物。例如,聚对苯二甲酸酯(PET)是一种在饮料瓶和纺织品中广泛用于的热塑性,而不饱和聚酯树脂(UPR)或乙烯基酯树脂经常用于纤维纤维增强的塑料。答案取决于相关聚酯的特定类型。
如果热塑料重新加热会发生什么?
热固性塑料由于在固化过程中形成的永久性交联结构而重新加热后无法融化或软化。取而代之的是,即使在升高的温度下,它们也保持着坚固的结构,如果暴露于过多的热量,它们将分解或char。
延展性是材料科学中的一个基本概念,它解释了为什么某些材料(例如金属)会在压力下显着弯曲或伸展,而另一些材料突然突然会弯曲。在本文中,我们将解释什么是延展性,如何测量,为什么重要以及哪些因素影响它。 延展性的定义 延展性是材料在断裂前张力造成塑性变形的能力。简而言之,可以将延性材料拉长很长的路,而无需捕捉 - 考虑将铜拉入电线中。相比之下,像玻璃这样的脆性材料几乎没有变形后倾向于破裂或破碎。在材料科学中,塑性变形是形状的永久变化。这与弹性变形不同,弹性变形是可以恢复的。延展性与可塑性密切相关,但更具体:可塑性是在任何模式(张力,压缩或剪切)下永久变形的一般能力,而延展性则是指张力的能力。 从原子的角度来看,许多金属的高延展性来自非方向金属粘结以及允许脱位移动的滑移系统的可用性。施加压力后,脱位滑行使金属晶体可容纳塑性应变,因此金属通常弯曲或拉伸而不是断裂。相比之下,陶瓷和玻璃具有定向离子或共价键,并且滑动非常有限,因此在张力下,它们在明显的塑料流动之前倾向于破裂。但是,并非所有金属在室温下都是延性的(例如,某些BCC金属,高碳钢和金属玻璃杯可能相对脆),并且加热玻璃弯曲的玻璃弯曲主要是由于其玻璃转换温度以上的粘性流量,而不是金属式耐耐耐高压。 测量延展性 拉伸测试是量化延展性的最常见方法:标本以单轴张力加载到骨折中,延展性据报道是休息时伸长率的百分比和降低面积的百分比。 休息时伸长百分比(a%) 骨折时量规长度的百分比增加:a%=(lf -l0)/l0×100%,其中l0是原始量规长度,而LF是断裂时的最终长度。较高的A%表示拉伸延展性更大。 减少面积百分比(RA%) 裂缝位置的横截面的百分比降低:RA%=(A0 - AF)/A0×100%,其中A0是原始面积,AF是休息时的最小面积。大的RA%反映出明显的颈部和强烈的颈后延展性。 (对量规长度不太敏感;对于非常薄的纸张而言并不理想。) 这两种措施通常是拉伸测试的一部分。例如,可以描述钢样品的伸长率20%,而在休息时降低了60%的面积 - 表明延性行为。相比之下,脆性陶瓷可能仅显示1%的伸长率,而本质上可能显示出0%的面积减少(几乎没有变薄)。伸长率和降低越大,材料的延展性就越大。 可视化延展性的另一种方法是在应力 - 应变曲线上,这是从拉伸测试获得的图。绘制应力(相对变形)的应力(每单位面积)。此曲线上的要点包括: 杨的模量(E):线性弹性区域的斜率;刚度的度量。 屈服强度(σᵧ):塑性变形的发作(通常由0.2%偏移方法定义时,当不存在尖锐的屈服点)。 最终的拉伸力量(UTS):最大工程压力。超越标本的脖子;断裂发生后期,通常处于较低的工程压力下。 断裂点:标本最终破裂的地方。 延性材料(蓝色)与脆性材料(红色)的代表性应力应变曲线 延性材料的曲线在屈服后显示长塑料区域,表明它可以在骨折前保持较大的应变。相比之下,脆性材料的曲线在屈服点附近结束,几乎没有塑料区域。总而言之,在工程应力 - 应变图(对于规定的规格长度)上,延展性反映了裂缝的总应变 - 延性材料的长时间,脆性材料的较短。但是,明显的断裂应变取决于所选的量规长,一旦颈部开始定位,颈部开始定位,因此工程曲线不是颈后延展的直接衡量。因此,规格通常在休息时报告百分比伸长率(a%)以及降低面积百分比(RA%)。 延展性和延展性有什么区别? 延展性是一种材料在不破裂而伸展张力的能力。我们以拉伸测试的伸长百分比或减少面积来量化它。如果可以将金属吸入电线,则是延展性的。锻造性是一种材料在压缩方面变形的能力(不开裂,可以锤击,滚动或压入纸板);我们通过弯曲/扁平/拔罐测试或减小厚度可以耐受多少判断。 实际上:黄金,铜和铝都是高度延展且可延展的(非常适合电线和纸板)。铅非常具有延展性,但仅适中延展性(易于滚动成薄片,较差,作为细丝)。镁在室温下的延展性有限,而锌在变暖时会更具延展性。为了制造制造,选择延性合金用于绘画,深度拉伸和下拉的功能;选择可延展的合金滚动,冲压和锻造,在压缩占主导地位的地方。温度和晶体结构移动两个特性。快速规则:延展性=张力/电线;锻造性=压缩/表。 为什么延展性很重要 延展性是制造性和服务安全性安全背后的安静主力。在工厂中,它允许将金属卷成纸板,将其拉入电线并锻造而不会破裂。在现场,它使组件能够吸收能量,重新分配应力并在失败前提供警告。 制造的延性材料 高延展性通常意味着一种材料是可行的:它可以锻造,滚动,绘制或挤出成各种形状而不会破裂。低延展性(脆性)意味着该材料很难变形,并且更适合于铸造或加工等过程(在材料不强迫塑料形状过多地改变形状)之类的过程中。 锻造和滚动:这些过程通过锤击(锻造)或在掷骰(滚动)之间将固体金属变形为形状。延性金属耐受涉及的大塑料菌株。实际上,钢板/开花被热卷成薄板,板和结构形状,例如I光束,铝很容易被伪造成组件 - 金属在压缩载荷下流动。相比之下,像铸铁这样的脆性合金倾向于在沉重的变形下破裂,因此通常通过铸造到近网状形式来形状。 挤出和电线/栏绘图:挤出将金属推动通过模具制作长而恒定的截面产品。电线/条形图将固体库存通过模具降低直径。两者都依靠塑料流。可以将延性合金(例如铝,铜和低碳钢)挤出到试管和轮廓(例如窗框,热水链截面)中,并将其抽入细线。在加工温度下没有足够的延展性的材料倾向于检查或裂缝,这就是为什么玻璃或陶瓷不会以固态挤出/绘制的原因;他们的纤维是融化的。 深图:深色绘图形成轴对称的杯子和罐,并用拳头迫使薄板进入模具;法兰向内进食,而墙壁略微稀薄。足够的延性可防止分裂和皱纹。铝饮料罐头是经典的例子。 薄板金属弯曲和冲压:车身面板和外壳的一般弯曲和冲压需要延展性,以避免边缘裂纹和橙色 - 薄荷伸展时。钢制和铝等级是针对形成性量身定制的,因此可以将复杂的形状(例如,汽车引擎盖)盖章而不会故障。 金属3D打印(AM):延展性仍然很重要。当然的零件(尤其是来自激光粉床融合(LPBF))可以显示出由于细,质感的微观结构,残留应力和孔隙率而显示出降低的延展性。压力缓解和热等静止压力(髋关节),然后经常进行轻热处理,恢复延展性并降低开裂风险;然后,TI-6AL-4V和ALSI10MG等合金可以提供有用的服务延展性。 现实世界应用的延性材料 延展性不仅是实验室指标,还直接影响现实世界结构,车辆和设备的性能。这就是为什么它在工程和设计中重要的原因: 防止突然失败并提高安全性:延性材料逐渐失效:它们在断裂前产生和吸收能量,提供可见的警告并允许负载重新分配。在建筑物中,这就是为什么结构钢受到青睐的原因 - 超负荷的梁会弯曲而不是捕捉。钢筋混凝土遵循相同的逻辑:嵌入式钢钢筋增加延展性,因此成员可以在地震需求下弯曲而不是分开。 影响(地震和碰撞应用)中的能量吸收:在动态载荷下,延展性将影响能量变成塑料工作。钢框通过屈服来消散地震力,并以钢或铝折叠的汽车碎区域的控制方式以受控的方式降低机舱减速。现代人体结构平衡强度与延展性(例如DP/Trip Steels),并且航空航天Al/Ti合金保留足够的延展性,以造鸟,加压和冷soak耐受性。 […]
通过机械加工的制造过程,可以将材料成型为所需的产品。然而,加工材料并不总是一件容易的事,因为材料的特性和具体的加工条件在决定整个过程的平稳性和效率方面起着至关重要的作用。所有这些考虑都与一个关键词“机械加工性”有关。
从微型电子产品到重型工业系统,几乎每件硬件都依赖机械紧固件才能有效运行。本文深入探讨了紧固件及其广泛的应用。准备好仔细看看了吗?加入我们,一起发现: 什么是紧固件? 不同类型的紧固件及其用途 用于制造紧固件的材料 如何为您的项目选择合适的紧固件 什么是紧固件? 紧固件是一种用于将两个或多个物体机械连接或固定在一起的硬件设备。它涵盖了广泛的工具类别——螺钉、螺母、螺栓、垫圈、铆钉、锚栓和钉子等各种形式。 大多数紧固件可以轻松拆卸和重新组装,而不会损坏螺钉和螺栓等部件。它们形成非永久性关节,但这并不意味着该关节很弱;事实上,如果安装正确,它们可以承受很大程度的压力。 此外,还有焊接接头和铆钉等紧固件,它们可以形成不易拆卸的永久结合。根据应用的不同,紧固件有各种形状、尺寸和材料,每种都有其独特的功能和用途。我们将在下面的段落中研究这些以及更多内容。 不同类型的紧固件及其用途 如上所述,紧固件有多种形式。每种类型都根据其设计和功能满足独特的应用。以下是紧固件主要类型、子类型和具体用途的详细分类。 类型 1:螺丝 螺钉是高度通用的紧固件,具有头部和螺纹杆,可提供强大的抓地力和抗拉力。它们有各种头部形状(例如扁平、圆形或六角形),可以适应不同的工具和审美需求。 与螺栓不同,许多螺钉(例如自攻螺钉)可以在材料中创建自己的螺纹,而无需预先钻孔。使用螺丝刀或电钻等简单工具即可快速安装,并且不需要螺母进行紧固。螺钉与多种材料兼容,包括木材、塑料和薄金属。一些最常见的包括: 木螺丝 顾名思义,木螺钉通常是部分螺纹的,专门设计用于连接木块。它们具有锋利的尖端和粗螺纹,使它们能够轻松穿透木材并提供牢固的抓握。 机械螺丝 与木螺钉相比,这些螺钉具有更细的螺纹,这使得它们更适合金属和刚性复合材料等硬质材料。它们具有一致的柄直径,尖端没有锥形。通常,机器螺钉插入预先钻好的螺纹孔中或与螺母配对以进行安全组装。 金属板螺丝 金属板螺钉是自攻螺钉专为薄金属板(如金属板)和其他薄材料而设计。它们具有全螺纹柄和锋利的螺纹尖端,可以轻松地将螺纹切削到薄金属中。 自钻螺钉 自钻螺钉采用金属板螺钉的全螺纹设计,但配有钻头形状的尖端。这一独特的功能使它们能够直接钻入钢或铝等硬质基材,而无需预钻孔。它们对于固定较厚的金属材料特别有效,可提高效率并易于安装。 甲板螺丝 与主要用于室内或受保护的木材连接的木螺钉不同,甲板螺钉是专门为室外应用而设计的木螺钉。它们通常由不锈钢、镀锌钢或具有特殊防腐涂层的材料制成。甲板螺钉通常具有全螺纹柄,有些设计采用双螺纹或特殊螺纹,以适应温度和湿度波动引起的膨胀、收缩和应力。 六角拉力螺钉 六角拉力螺钉是大型木螺钉,设计为用扳手或套筒而不是螺丝刀驱动。它们具有粗粗螺纹和六角头,可提供出色的扭矩,是最坚固的金属和木材紧固件之一。由于这些螺钉的尺寸和强度,需要预先钻好导向孔。由于其处理重负载的能力,它们非常适合框架、甲板和重型家具等结构应用。 类型 2:螺栓 螺栓与螺钉具有相似的结构,具有从尖端开始的外外螺纹。与螺钉不同,螺栓不是自攻螺纹,也不会在材料中切出螺纹。相反,它们与预攻丝孔或螺母配合使用,以形成坚固的机械接头。以下是最流行的螺栓类型: 六角头螺栓 六角头螺栓有六角头;这种设计使它们可以使用标准扳手或电动工具轻松拧紧或松开,从而确保高效的组装和拆卸。它们带有机器螺纹,可以完全或部分沿螺栓长度延伸。全螺纹螺栓在需要强夹紧力的应用中表现出色,而部分螺纹螺栓凭借其光滑的杆部,可为横向承载应用提供卓越的剪切强度。 马车螺栓 马车螺栓有一个圆形凸形金属头,后面是方颈和螺纹轴。方颈设计用于锁定在材料内,防止螺栓在安装过程中旋转并确保稳定性。这些螺栓主要用于木材应用,例如木框架或家具组装。 吊环螺栓 吊环螺栓一端具有圆形环(或“吊环”),另一端具有螺纹杆。螺纹端拧入表面,而环可以轻松连接或悬挂物体。这些螺栓通常用于需要拉力的应用,例如提升重物或将绳索和电缆固定到结构上。 内六角螺栓(内六角螺栓) 这些类型的紧固件通常具有圆柱形头部,该头部带有用于驱动工具的六角形凹槽。可以使用内六角扳手或六角扳手来拧紧。与传统螺栓(例如带有外驱动头的六角螺栓)相比,内六角螺栓具有更小、更紧凑的头部。这种设计允许在狭小或有限的空间中应用高扭矩。 U 型螺栓 U型螺栓的形状像“U”形,杆部两端都有螺纹。它们可以缠绕管道或其他圆柱形物体,将它们固定在平坦的表面或结构上,而不会对管道造成永久性损坏或影响流体流动。 双头螺栓 双头螺栓,或双头螺栓,两端都有螺纹,中间有一个无螺纹的杆部。它们用于从两侧固定两个或多个零件,通常用于需要双端紧固的法兰组件或结构连接等应用。这些螺栓可以在其一端或两端使用螺母。 类型 3:坚果 螺母是螺栓不可或缺的伙伴。这些紧固件具有内螺纹,与螺纹尺寸和螺距相匹配的螺栓配对,以确保牢固的夹紧和增加的扭矩。与螺栓和螺钉一样,螺母也有各种形状和尺寸。以下是一些最常见的坚果类型: 六角螺母 作为标准六面螺母,六角螺母是最常见的类型,适用于通用紧固。它们很便宜,您可以使用扳手或钳子轻松组装它们。 尼龙锁紧螺母 尼龙锁紧螺母与后继结构的六角螺母类似,但具有一个额外的轴环,可容纳尼龙环或金属嵌件。这种设计有效防止高振动环境下的松动。 城堡螺母(开槽螺母) 城堡螺母的顶部切有槽,类似于城堡的城垛。这些槽与螺栓或螺柱上的预钻孔对齐,螺母就位后,可以将开口销插入孔中以将其固定,防止松动。 法兰螺母 法兰螺母与六角螺母类似,但底部有一个宽法兰,可用作内置垫圈。这种设计有助于将负载均匀分布在更大的区域,降低连接材料损坏的风险并增强螺母的抓力。 盖形螺母(盖形螺母) […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español