对于金属表面处理,阳极氧化通常是第一个想到的方法,尤其是铝。然而,还有一种更通用的替代方法:电镀。与仅限于特定金属的阳极氧化不同,电镀适用于更广泛的材料。通过在零件上沉积一薄层金属,可以显着增强零件的外观、耐腐蚀性、耐用性和导电性。
电镀的历史可以追溯到 19 世纪初,当时意大利化学家 Luigi Brugnatelli 首次使用电流将金镀到银上。然而,直到 1830 年代,英国科学家约翰·赖特 (John Wright) 和乔治·埃尔金顿 (George Elkington) 完善了这项技术,并于 1840 年获得了一种可靠的金属涂层方法专利,电镀才开始广泛工业化。几十年来,它扩展到包括铜、镍和铬等各种金属,使制造商能够保护产品免受腐蚀,同时提高其视觉吸引力。如今,这种复杂的工艺已成为现代制造业不可或缺的一部分。
在本指南中,我们将深入探讨电镀的复杂性,探索其工艺、类型、优点、局限性以及在当今行业成功实施所需的关键因素。

电镀是一种电沉积过程,使用电流将一薄层金属(称为沉积金属)涂覆到另一种材料(称为基材材料)的表面上。通过添加一层所需的金属,我们可以增强基材的美观性和各种性能:导热性和导电性等物理性能、强度和耐磨性等机械性能以及耐腐蚀性等化学性能。
电镀中用作沉积金属的材料是根据其具体性能来选择的,它们可以单独或组合使用,以在基材上达到所需的效果。以下是一些常用的金属:
请注意,必须仔细选择基材和涂层,因为并非所有材料都兼容。例如,钢不能直接镀银;在镀银层之前,必须先镀铜或镀镍。

电镀过程依靠电化学原理在基材上沉积一层薄薄的金属。为了更好地说明这个过程,我们以电镀铜为例。以下是其工作原理的逐步分解:
该过程涉及四个关键部件:阳极、阴极、电解液和电源。正确设置这些组件至关重要:
例如,要在黄铜上涂上铜,黄铜作为基材并连接到负极端子,使其成为阴极。我们使用铜基溶液(例如硫酸铜)作为电解质。该溶液溶解时释放出正铜离子。另一端则采用铜阳极来补充电解液中的铜离子,保证电镀过程中金属离子的持续供应。
一旦阳极和阴极都浸入硫酸铜溶液中并连接到电源,直流电(DC)就会从电源流向阳极。这通过电解质溶液在阳极和阴极之间产生电场。阴极带负电(由于电子过多),而阳极带正电。
在电场的作用下,溶液中带正电的铜离子 (Cu2+) 被吸引到带负电的黄铜阴极。到达阴极后,这些离子获得电子并还原为固体铜,然后以薄铜层的形式沉积在黄铜表面上。
阴极的还原反应为:Cu2+ (aq) + 2e− →Cu(s)
同时,流过阳极的电流导致铜原子失去电子(氧化),以铜离子(Cu2+)的形式溶解到溶液中。
阳极的氧化反应为:Cu(s) → Cu2+ (aq) + 2e−
这些铜离子 (Cu2+) 从阳极迁移到阴极,当铜离子在阴极表面被还原为固体铜时,新的还原循环开始。同时,阳极铜原子失去的电子通过外部电路到达阴极,完成电路。
随着电镀的继续,铜阳极逐渐溶解,不断补充溶液中的铜离子,保持离子浓度稳定。如果使用不同的金属作为阳极,溶液中的铜离子将得不到补充,导致硫酸铜溶液的颜色变浅,浓度降低。

有多种电镀方法可供选择,每种方法都针对不同的应用而定制,并旨在实现特定的结果。以下是主要类型的总结:
| 电镀法 | 特征 | 应用领域 |
| 巴尔埃尔 电镀 | ▪ Small parts are placed in a rotating barrel containing the electrolyte solution. Electrical contact is made to allow plating to occur as the parts tumble. ▪ Highly economical for bulk production; Ensures a uniform coating across all parts. ▪ Not suitable for delicate parts that require high precision; Parts may scratch or entangle due to the tumbling motion. | 用于小型耐用零件,如螺母、螺栓、螺钉和垫圈。 |
| 挂镀 | ▪ Larger or more delicate items are attached to racks, which are then submerged in the plating solution. Electrical current is uniformly distributed through the rack to ensure even plating. ▪ Offers superior coating control, provides a high-quality, consistent finish and minimizes damage to fragile or complex parts. ▪ Capable of coating complex contours, though coverage in deep recesses and narrow grooves may vary depending on current distribution and part design. ▪ More expensive and labor-intensive than barrel plating. | 用于大型、易碎或复杂的零件,例如汽车部件、电气部件、医疗设备、航空航天部件和珠宝。 |
| 连续电镀 | ▪ Involves passing long materials like wires or strips through the electrolyte bath continuously, often referred to as reel-to-reel plating for thin strips. ▪ Highly automated and allows control over coating thickness and consistency. Well-suited for high-speed, high-volume production. ▪ Limited to long, uniform items such as wires and strips; Initial setup can be costly. | 通常用于电子和制造等行业的线材、金属带材和管材的涂层。 |
| 在线电镀 | ▪ Uses an assembly line setup where parts are passed through several stations, each contributing to the plating process. ▪ Automated method minimizes manual labor and controls the use of chemicals more precisely, making it cost-effective. ▪ Provides less control over coating uniformity compared to rack plating; Not ideal for complex geometries. | 通常用于在各种基材上电镀铜、锌、铬和镉等金属,特别是在大批量生产中。 |

通过在基材上涂上一薄层金属,电镀可显着提高物理、机械和化学性能。下面,我们将探讨这些改进的特性并重点介绍典型的行业应用。
电镀使表面更光滑、更有光泽,同时保持低成本,从而改善基材的外观。虽然金属天然具有导电性,但电镀增加了导电性更强的层,可以在不大幅增加成本的情况下提高性能。它还允许非金属用于电气应用,降低成本和重量,从而简化运输和存储。
消费品行业:珠宝和手表经常使用金、银或铑等贵金属电镀来提高其光泽和美观度,从而增加其市场吸引力。家用电器和厨房用品,如餐具、炊具、水龙头和水壶,镀上铬或镍等更闪亮的金属后看起来更有吸引力。电镀还使这些物品更容易清洁。
国防和航空航天工业:黑色化学镀镍可吸收光并减少表面反射。这对于制造需要最大限度降低可探测性的隐形车辆和航空航天部件至关重要。
电子行业:镀金因其强导电性和耐腐蚀性而常用于半导体、连接器和开关。银具有更好的导电性,通常用于需要快速信号传输的电线、触点和 PCB 中。铜具有良好的导电性和较低的成本,可作为黄金的实用替代品,特别是在 PCB 和电气连接领域。
电镀可增强材料的机械性能,根据应用提高拉伸强度、弯曲强度、耐磨性和整体耐用性。此外,它还可以改善表面光洁度,使材料更易于处理并减少摩擦。这些增强功能提高了短期性能,同时也延长了产品的使用寿命。
航空航天和汽车工业:在这些领域,镍和铜镍合金通常镀在飞机机身、结构元件和底盘部件上。该工艺有助于提高整体韧性和弯曲强度。与此同时,镀硬铬广泛应用于发动机零件、轴承和齿轮等关键部件,可提高耐磨性并增强冲击耐久性。
工具和模具制造:镍和钴涂层通常用于强化工具和模具,提高拉伸强度和耐磨性以承受高应力条件。硬铬在这些应用中也很受欢迎,因为它增强了耐磨性,同时最大限度地减少材料粘附。
3D打印和塑料产品:镀镍用于3D打印的SLA树脂和塑料产品,以增强拉伸强度和弯曲性能。这种处理有助于弥合塑料和金属之间的差距,使这些材料的机械性能更接近金属。
电镀形成保护屏障,增强对腐蚀、化学品、紫外线和辐射的抵抗力,延长在恶劣环境中使用的材料的使用寿命。这对于暴露于腐蚀性物质或户外条件下的组件特别有利。
医疗行业:金和钛涂层由于具有高生物相容性和体液耐腐蚀性,常用于心脏支架、关节假体和牙种植体等医疗器械。镀银具有天然的抗菌特性,通常应用于导管和其他装置以降低感染风险。
海洋工业:为了对抗盐水和湿度的腐蚀,镀锌被应用于大型海洋结构,如船舶甲板、栏杆和框架。化学镀镍还用于管道和阀门,在恶劣的海上环境中提供可靠的保护。
化学工业:在化学工业中,设备必须能够承受强酸和强碱。钛涂层因其对这些腐蚀性物质的优异抵抗力而受到青睐,常用于化学反应器、储罐和工业蒸发器,确保即使在极端条件下也能稳定运行。
航空航天工业:航天器和卫星长期暴露在强烈的紫外线和宇宙辐射下,随着时间的推移,材料会降解。为了抵御这些恶劣条件,它们的表面通常镀有铝和金。还使用镀镍,提供额外的耐大气腐蚀能力。
尽管有这些优点,电镀也有其局限性:
电镀涉及使用氰化物、重金属和酸等危险化学品,如果管理不当,可能会导致环境污染。危险废物的处置和废水的处理可能成本高昂,并且必须遵守严格的环境法规以避免污染。
此外,电镀是一种能源密集型工艺,尤其是在大规模生产中,因为它需要持续供应直流电 (DC)。这种高能耗增加了生产成本并导致更大的碳足迹,从而影响环境。
电镀效果依赖于对电流密度、电解质溶液温度和浓度等多个参数的精确控制,以及对预处理过程中每个步骤的严格管理。此外,必须考虑不同基材的特性,因为并非所有材料都与电镀溶液兼容。例如,某些金属可能会在某些溶液中发生电化学腐蚀或不良反应,从而导致涂层无法均匀粘附。
电镀可能是一个缓慢的过程,尤其是在涂覆高质量或厚涂层时。虽然增加电源或电解质浓度可以加快这一过程,但通常会导致涂层不均匀,从而影响整体质量。这种延长的处理时间会延迟生产计划并影响制造效率。
电镀主要适用于薄涂层,通常范围从几微米到几百微米。对于需要更厚、更耐用涂层的应用,热喷涂、熔覆或热浸镀锌等方法更有效。
电镀的好处仅限于表面层。一旦表面涂层被划伤或磨损,下面的材料就会暴露出来,可能会失去电镀所提供的性能增强功能。这使得它不太适合需要深层或结构保护的应用。

电镀是一种强大的技术,可以显着增强材料性能,并已成为各个行业的流行选择。但是,始终如一地执行仍然具有挑战性。这就是为什么与专业电镀供应商合作对于获得可靠结果至关重要。
在 Chiggo,我们的工程师团队经验丰富,在电镀方面拥有十多年的专业知识,使我们成为您项目的理想合作伙伴。拥有先进的制造能力,包括数控加工和钣金制造以及内部设施和强大的网络,我们可以提供高精度金属零件,同时缩短交货时间。 立即联系我们获取专家电镀解决方案!
想一想金属汤匙。如果您在手柄上轻轻按下,它会弯曲一点,但放手后立即弹回。不过,更努力地推动,勺子会永久弯曲。那时,您已经超越了汤匙的屈服强度。在本文中,我们将探讨屈服强度的含义,与相关思想(如拉伸强度和弹性限制)进行比较,以及为什么在现实世界中它很重要。我们还将研究影响强度和常见材料的典型值的因素。 什么是屈服强度? 屈服强度是材料开始永久变形的应力水平。简而言之,这是材料停止反弹(弹性行为)并以无法完全逆转的方式弯曲或伸展的点。在屈服强度以下,当您卸下力时,材料恢复为原始形状(就像弹簧可以追溯到其长度)。超过屈服强度,材料永远改变了:它已经屈服了,这意味着它已经经历了塑性变形。 为了更好地理解这一点,让我们分解两个关键术语:压力和压力。应力是将力施加到材料除以其横截面区域的材料,或仅仅是材料内部力的强度。您可以将其视为压力,但压力描述了内部反应而不是外部推动。应变是材料在响应中的变化多少,计算为长度的变化除以原始长度。当我们策划压力抵抗压力时,我们会得到一个应力 - 应变曲线这显示了材料随着负载的增加的表现。 在应力 - 应变曲线的早期,材料的行为表现:压力和应变是成比例的(根据Hooke定律的直线),一旦去除负载,材料就会恢复其原始形状。该区域的末端是弹性限制 - 占地,某些变形仍然是永久性的。屈服强度标志着从弹性行为到塑性行为的转变,并定义了可逆变形和不可逆变形之间的边界。 对于许多延性金属,例如低碳钢,这种过渡是逐渐而不是锋利的。为了始终定义屈服强度,工程师经常使用0.2%的偏移方法:他们绘制一条平行于曲线弹性部分的线,但变为0.2%应变。该线相交曲线的点被视为屈服强度。这提供了一种实用,标准化的方法,即使不存在明显的产量点,也可以测量屈服强度。 屈服强度与拉伸强度 正如我们所定义的那样,屈服强度是材料开始永久变形的压力。拉伸强度(通常称为终极拉伸强度(UTS))是材料破裂之前可以承受的最大压力。一旦达到该点,材料将不再承担额外的负载,并且很快就会裂缝。 两者都描述了材料对压力的反应,但它们代表不同的限制:屈服强度标志着永久变形的开始,而拉伸强度则标志着断裂点。例如,在拉动钢棒时,它首先会弹性伸展。超越屈服强度,并实现永久伸长率。继续前进,直到达到拉伸强度为止,杆最终将抢购。 在实践设计中,工程师更多地专注于产量强度,因为组件必须保持功能,而不会造成持久损坏。拉伸强度仍然很重要,但通常标志着失败条件永远不会在服务中发生。 除拉伸强度外,屈服强度还经常与其他两个概念相混淆: 弹性极限:弹性极限是材料可以承受的最大应力,一旦去除负载,仍将完全返回其原始形状。低于此极限,所有变形都是弹性和可逆的。在许多情况下,弹性极限非常接近屈服强度,因此两者通常被视为相同。尽管弹性极限标志着精确的物理边界,但屈服强度提供了标准化的工程值,可以始终如一地测量并用于安全设计。 比例极限:该术语来自应力 - 应变曲线的线性部分。比例限制是遵循胡克定律的压力和压力直接比例增加的点。它通常发生在弹性极限和屈服强度之前。在这一点之外,曲线开始弯曲 - 尽管材料仍然具有弹性,但这种关系不再是完美的线性。 影响力强度的因素 屈服强度无法保持固定 - 它可以根据几种物质和环境因素而改变。这是一些最常见的: 材料组成(合金元素) 金属的构成对其产量强度产生了重大影响。在金属中,添加合金元素可以使它们变得更坚固。例如,当添加碳,锰或铬等元素时,钢的强度也会增强 - 尽管碳也更脆。铝合金从铜,镁或锌等元素中获得强度。这些添加物在金属内部产生了微小的障碍,从而阻止了位错运动(塑性变形的原子级载体),从而提高了强度。简而言之,金属的“食谱”可以使弯曲更难或更容易。这就是为什么苏打中的铝易于柔软而柔软的,而飞机机翼中的铝(与其他金属混合在一起)具有更高的屈服强度。 晶粒尺寸(微观结构) 通常,较小的晶粒意味着更高的强度,这是霍尔 - 格什关系描述的趋势。原因是晶界充当脱位运动的障碍,因此更细的谷物会产生更多的障碍,并使金属更强壮 - 到达一点点。冶金学家通过控制的固化或热机械处理来完善晶粒尺寸。例如,许多高强度的钢和超合金用非常细的晶粒设计以最大化屈服强度,而晶粒非常大的金属往往更容易产生。 热处理 金属加热和冷却的方式可以改变其结构,从而改变其屈服强度。退火(缓慢加热和冷却)软金属,降低其屈服强度,并通过缓解内部应力来使其更具延展性。淬火(在水或油中快速冷却)将结构锁定到坚硬的,压力的状态,大大提高了屈服强度,但也使金属变脆。为了恢复平衡,淬灭通常是回火,一个适度的加热步骤,可改善韧性。 通过选择正确的热处理,制造商可以根据应用使金属更难或更柔软。例如,对弹簧钢进行处理以达到高屈服强度,因此它可以弯曲而不会变形,而钢丝首先要退火以易于塑形,然后再加强。 制造过程(冷工作) 如何机械处理材料也可以改变其屈服强度。冷工作(在室温下变形金属,例如冷滚动或冷图)通过称为工作硬化的机制提高了强度。当您将金属变形时,您会在其晶体结构中引入错位和纠缠,这使得进一步变形更加困难 - 实际上,金属随着变形而变得更强壮。这就是为什么在热卷(不工作)条件下,冷滚动钢通常比同一钢具有更高的屈服强度。 温度和环境 根据经验,大多数金属在高温下会失去屈服强度。热使金属变软,因此可以用较小的力变形。在非常低的温度下,有些材料变得更加脆弱。它们塑性变形的能力降低了,因此尽管屈服应力在技术意义上可能会增加,但它们比产量更有可能破裂。 诸如腐蚀或辐射等环境因素也会降解材料。腐蚀会产生凹坑或减少横截面区域,从而有效减少结构在屈服之前可以承受的负载。例如,生锈的钢梁在载荷下可能会产生的厚度比未腐蚀的束较低,因为其有效厚度会降低,并且来自锈蚀的微裂缝会浓缩压力。 产量不同材料的强度 应力 - 应变曲线提供了一种简单的方法来比较不同材料对负载的反应方式。在上图中,我们可以看到四个典型的行为。随着压力的增加,每个反应都不同,其屈服强度反映了这些差异。 脆性材料:脆性材料,例如玻璃或陶瓷,几乎没有塑性变形。他们沿着几乎直线直线直至突然断裂。他们的屈服强度非常接近他们的最终力量,因为他们并没有真正“屈服” - 它们中断。 强但不是延性材料:某些材料(例如高强度钢)可以承受高应力,但显示有限的延展性。它们具有很高的屈服强度,这意味着它们可以很好地抵抗永久性变形,但是在破裂之前并没有伸展太多。 […]
类似于所有其他3D打印过程(例如聚合物3D打印),Metal 3D打印机通过基于数字3D设计的一次添加材料来构建零件,因此添加了添加剂制造。仅此一次,该过程使用金属粉末,电线或聚合物结合丝而不是塑料。
STEP 文件是工程和设计中 3D 模型的通用语言。如果您曾经需要在不同的软件程序之间共享复杂的 CAD 模型,您可能遇到过 STEP 文件。 本文将讨论 STEP 文件定义、该格式的历史、其优点和缺点、与其他格式的比较、常见用例以及可用于打开或转换这些文件的软件。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español