小型エレクトロニクスから頑丈な産業システムに至るまで、ほぼすべてのハードウェアが効果的に機能するために機械的ファスナーに依存しています。この記事では、ファスナーとその幅広い用途について詳しく説明します。詳しく見てみる準備はできましたか?以下のことを明らかにしていきましょう。

ファスナーは、2 つ以上のオブジェクトを機械的に結合または固定するために使用されるハードウェア デバイスです。これには、ねじ、ナット、ボルト、ワッシャー、リベット、アンカー、釘など、さまざまな種類の工具が含まれます。
ほとんどの留め具は、ネジやボルトなどのコンポーネントを損傷することなく、簡単に分解して再組み立てできます。それらは非永久的な関節を形成しますが、これは関節が弱いことを意味するものではありません。実際、正しく取り付けられていれば、かなりのストレスに耐えることができます。
さらに、溶接ジョイントやリベットなどの留め具があり、簡単に分解できない永久的な結合を形成します。用途に応じて、ファスナーにはさまざまな形状、サイズ、素材があり、それぞれに独自の機能と実用性があります。これらについては、次の文章でさらに詳しく見ていきます。
上で述べたように、ファスナーにはさまざまな形式があります。各タイプは、そのデザインと機能に基づいて独自の用途を実現します。以下は、ファスナーの主なタイプ、そのサブタイプ、および特定の用途の詳細な内訳です。
ネジは非常に汎用性の高いファスナーで、強力なグリップ力と引き抜き力に対する耐性を提供するヘッドとネジ付きシャンクを備えています。平型、丸型、六角型など、さまざまなヘッド形状が用意されており、さまざまなツールや美的ニーズに対応できます。
ボルトとは異なり、セルフタッピンねじなどの多くのねじは、事前に穴を開ける必要がなく、材料に独自のねじ山を作成できます。ドライバーや電動ドリルなどの簡単な工具を使用して簡単に取り付けることができ、締め付けにナットは必要ありません。ネジは木材、プラスチック、薄い金属など幅広い材質に対応します。最も一般的なものには次のようなものがあります。

名前が示すように、木ねじは通常、部分的にねじ山が切ってあり、木材を接合するために特別に設計されています。鋭利な先端と粗いねじ山を備えているため、木材に容易に浸透し、確実なグリップを提供します。

これらのネジは木ネジに比べてネジ山が細いため、金属や硬質複合材料などの硬い材料に適しています。先端が先細りになることなく、一定のシャンク径を備えています。通常、小ねじは、事前に開けられたねじ穴に挿入されるか、ナットと組み合わせて確実に組み立てられます。

板金ネジは セルフタッピングネジ 薄い金属シート (板金など) およびその他の薄い材料用に特別に設計されています。全ねじ付きシャンクと鋭利なねじ付き先端を備えているため、薄い金属にねじを簡単に切断できます。

セルフドリルねじは、板金ねじの全ねじ設計を共有していますが、ドリルビットの形をした先端が付いています。この独特の機能により、事前に穴を開ける必要がなく、スチールやアルミニウムなどの硬い基材に直接穴を開けることができます。これらは、より厚い金属材料を固定するのに特に効果的であり、より高い効率と取り付けの容易さを提供します。

主に屋内または保護された木材の接続に使用される木ネジとは異なり、デッキネジは屋外用途向けに特別に設計された木ネジです。これらは通常、ステンレス鋼、亜鉛メッキ鋼、または特別な防食コーティングが施された材料で作られています。デッキスクリューは通常、全ねじシャンクを備えていますが、温度や湿度の変動による膨張、収縮、応力に対応するために、二条ねじや特殊なねじ山を組み込んだ設計もあります。

六角ラグネジは、ドライバーではなくレンチまたはソケットで締められるように設計された大きな木ネジです。太くて粗いねじ山と六角形の頭部を備えたこのねじは、優れたトルクを提供し、金属や木材に対して最も強力な締結具の 1 つです。これらのネジは、そのサイズと強度のため、事前に下穴をあけておく必要があります。重い荷重に耐えられるため、フレーム、デッキ、重い家具などの構造用途に最適です。
ボルトはねじと同様の構造をしており、先端から雄ねじが切られているのが特徴です。ねじとは異なり、ボルトは自動ねじ切りではなく、材料にねじ山を切り込みません。代わりに、事前にタップされた穴またはナットと連携して、強力な機械的接合を作成します。最も一般的なボルトのタイプは次のとおりです。

六角ボルトは頭が六角形です。この設計により、標準のレンチや電動工具を使用して簡単に締めたり緩めたりできるため、効率的な組み立てと分解が保証されます。ボルトの長さに沿って完全にまたは部分的に延びる機械ねじが付いています。全ねじボルトは強いクランプ力を必要とする用途に優れており、半ねじボルトは滑らかなシャンク部分を備えているため、横方向の荷重に耐える用途に優れたせん断強度を発揮します。

キャリッジ ボルトには、丸い凸状の金属ヘッドがあり、その後に四角い首とネジ付きシャフトが付いています。スクエアネックは材料内の所定の位置にロックするように設計されており、取り付け中にボルトが回転するのを防ぎ、安定性を確保します。これらのボルトは、主に木材フレームや家具の組み立てなどの木材用途に使用されます。

アイボルトは、一端に円形のループ (または「アイ」) があり、もう一端にねじ付きシャンクが付いています。ねじ端は表面にねじ込まれ、ループにより物体の接続や吊り下げが簡単に行えます。これらのボルトは、重い荷物を持ち上げたり、ロープやケーブルを構造物に固定したりするなど、張力が必要な用途によく使用されます。

これらのタイプの締結具は通常、打ち込みツール用の六角形の凹部を備えた円筒形の頭部を備えています。締め付けには六角レンチや六角穴付き工具を使用します。外部ドライブヘッドを備えた六角ボルトなどの従来のボルトと比較して、ソケットヘッドボルトは頭部が小さく、よりコンパクトです。この設計により、狭いスペースや限られたスペースでの高トルクの適用が可能になります。

U ボルトは、シャンクの両端にネジが付いている「U」のような形をしています。パイプやその他の円筒形の物体に巻き付けて、パイプに永久的な損傷を与えたり、流体の流れに影響を与えたりすることなく、平らな面や構造物に固定できます。

ダブルエンドボルト、またはスタッドボルトは、両端にねじが切られており、中央にねじのないシャンクがあります。これらは、フランジ アセンブリや構造接続など、両端の締結が必要な用途で、2 つ以上の部品を両側から固定するために使用されます。これらのボルトは、一方または両方の端でナットと併用できます。
ナットはボルトにとって欠かせないパートナーです。これらのファスナーには雌ネジがあり、ネジのサイズとピッチが一致するボルトと組み合わせることで、確実なグリップとトルクの向上が保証されます。ボルトやネジと同様に、ナットもさまざまな形状やサイズで入手できます。以下に最も一般的な種類のナッツをいくつか示します。

六角ナットは標準的な六面ナットとして最も一般的な種類で、汎用の締結に適しています。値段も安いし、レンチやペンチで簡単に組み立てられます。

ナイロン ロック ナットは、構造的には六角ナットに似ていますが、ナイロン リングまたは金属インサートを収容する追加のカラーが特徴です。この設計は、高振動環境での緩みを効果的に防止します。

キャッスル ナットは、ナットの上部に城の胸壁に似たスロットが刻まれているのが特徴です。これらのスロットは、ボルトまたはスタッドに事前に開けられた穴と一致し、ナットを所定の位置に配置したら、コッター ピンを穴に挿入して固定し、緩みを防止します。

フランジ ナットは六角ナットに似ていますが、基部に幅広のフランジがあり、ワッシャーとして機能します。この設計により、負荷がより広い領域に均等に分散され、接続された材料への損傷のリスクが軽減され、ナットのグリップが強化されます。

ドームナットとも呼ばれる袋ナットは、露出したボルトのネジ山を覆う丸い閉じた端を持っています。このデザインはボルトのネジ山を損傷から保護し、完成した外観を提供します。

蝶ナットには 2 つの突き出た「羽根」があり、工具を使わずに手で簡単に締めたり緩めたりできます。このようなユニークな設計により、一時的な固定具やクランプなど、頻繁に調整が必要な用途に最適です。

ウェルド ナットは金属表面に溶接するように設計されており、永久的なネジ付き取り付けポイントが作成されます。多くの場合、届きにくい領域にコンポーネントを固定するための小さな突起または隆起 (「自動位置合わせ突起」または「取り付けスパイク」と呼ばれることもあります) が付いています。

ワッシャーは、中央に穴のある薄い円形の金属または非金属の部品です。これらは補助締結具として機能し、ボルトまたはネジの周囲に配置され、ナットまたは基材との接触を提供します。ワッシャーは、荷重の分散、表面の保護、摩擦の軽減、緩みの防止など、さまざまな目的に役立ちます。
平ワッシャーはシンプルな形状で最もよく使用されるタイプです。これらは主に、コンポーネントにかかるナットやボルトの荷重を均等に分散し、表面の損傷を防ぐために使用されます。
わずかに湾曲またはカットされたスプリング ワッシャーは、張力または予荷重を加えて気密性を維持することでスプリングのように機能し、コンポーネントの振動によって引き起こされるファスナーの意図しない緩みを防ぎます。
基本的な緩み止め機能を弾性力に依存するスプリングワッシャーとは異なり、ロックワッシャーは主に変形や摩擦による緩みを防止します。これらは、産業機械や自動車のアセンブリなど、動的負荷や高振動のシナリオでよく使用されます。

リベットは、ねじのない永久的な留め具の一種です。材料にあらかじめ開けられた穴に挿入し、一方の端を変形させてコンポーネントをしっかりと固定することで、強力で耐久性のある接続を実現します。一般的なリベットの種類は次のとおりです。
ポップリベットはブラインドリベットの一種で、材料の片面からのみ取り付けることができるため、裏面へのアクセスが制限されている場合に最適です。これらは管状の本体とマンドレルを備えており、引っ張られるとリベットが拡張して材料をしっかりと保持します。 POP リベットは、金属シート、プラスチック、複合材料などの薄い材料を接合するために一般的に使用され、迅速かつ効率的な固定ソリューションを提供します。
POP リベットのようなドライブ リベットは、リベットの裏側にアクセスすることなく片側から取り付けることができ、薄い材料の締結によく使用されます。 POP リベットは高強度用途向けに設計されていますが、ドライブ リベットはより軽量な作業に適しています。これらは、一般的な組み立てや軽工業用途、特に家庭やストレスの少ない環境で一般的に見られます。
三つ折りリベットはブラインド リベットの一種で、同じく材料の片面から取り付けられます。最も典型的な特徴は特殊なマンドレルで、取り付け時にリベット本体が 3 つの異なる「折り目」に拡張します。これにより、表面積が大きくなり、標準のブラインドリベットよりも保持力が強くなり、さまざまな厚さの材料を締結する際の汎用性が高まります。
ラージ フランジ リベットの最も注目すべき特徴は、その大きくて幅の広いフランジであり、これによりより大きな表面積が得られ、荷重分散が向上します。これは、設置中に薄い金属板やプラスチックなどの、より柔らかい、またはより壊れやすい材料への損傷を防ぐのに役立ちます。
先端に部分的な穴を設けた半筒状のリベットにより、取り付け時に必要な力を軽減します。セミチューブラーリベットはソリッドリベットほど強度はありませんが、他のタイプのブラインドリベットよりも優れたせん断強度を備え、強度と取り付けの容易さのバランスが取れています。

アンカーは、コンクリート、レンガ、乾式壁などの下地に安定して固定できるように特別に設計された留め具の一種です。ボルトやネジとは異なり、アンカーは脆い基材または中空の基材に確実な接続を作成します。最も広く使用されている 3 つのタイプは次のとおりです。
拡張アンカーは、コンクリート、レンガ、石などの固体基礎材料用に設計されています。ボルトまたはネジが締められると、事前に開けられた穴内で機械的に拡張することで機能し、摩擦を発生させてアンカーを所定の位置にしっかりと保持します。接着剤の硬化時間を必要とせず、施工後すぐに使用できます。拡張アンカーは高い引張荷重とせん断荷重に耐えることができるため、中程度から強力な固定ニーズに適しています。
プラスチックアンカーは、乾式壁や石膏などの柔らかい素材または中空の素材用に設計された軽量の留め具です。ネジが挿入されると拡張し、額縁や小さな備品などの軽荷重に安全で耐食性の高い接続を提供します。
トグル ボルトは、従来のボルトに似た外観をしていますが、拡張翼機構によって区別され、よりアンカーのように機能します。その主な機能は、表面の後ろで拡張し、より広い領域に荷重を分散させることによって、中空または弱い材料内でサポートを提供することです。その結果、トグル ボルトはプラスチック アンカーや拡張アンカーよりもはるかに重い荷重に耐えることができます。優れた保持力と耐振動性を備えているため、鏡、棚、テレビなどの重量物を乾式壁や中空の壁に固定するのに適しています。

釘は最も古いタイプの留め具の 1 つで、尖った先端と平らな頭を持つシンプルなデザインが特徴です。ねじとは異なり、ねじ山がなく、衝撃によって材料に打ち込まれ、保持のために摩擦とクランプ圧力に依存します。これらは通常、取り外しできず、主に木材、軽量プラスチック、薄い金属などの柔らかい素材に使用されます。ここでは、いくつかの主な種類の爪について説明しました。
一般的な釘は強くて耐久性があり、打ちやすいように大きな平らな頭が付いています。これらは、信頼性の高い固定が必要な構造木工や頑丈なプロジェクトに広く使用されています。
ボックス釘は一般的な釘よりも薄いため、木材が割れる可能性が低くなります。軽い額装や木工加工に適しており、すっきりとした仕上がりの外観が得られます。
ボックス釘と同様に、仕上げ釘は木工品の接合や仕上げに使用されます。多くの場合、すっきりと洗練された外観を実現するために、小さなヘッド (ほとんど目に見えない) が付いています。トリム作業、キャビネット、その他の装飾的な木工作業に最適です。
屋根用釘には、幅広で平らなヘッドと、厳しい天候に耐えられる防錆コーティングが装備されています。シャンクにはグリップ力を高めるためのリング状のネジが含まれている場合があり、これにより屋根板や金属屋根パネルを固定するのに効果的に機能します。
フローリングの釘は、床面と同じ高さまたは床面の下に確実に留まり、凹凸を防ぐ独自のデザインを採用しています。床板を所定の位置にしっかりと固定するためによく使用されます。
ファスナーは、機械的、環境的、美的といったさまざまな要件を満たすために、さまざまな材料から製造されています。以下は、使用される最も一般的な材料とその主な用途です。
スチールはファスナーに最も広く使用されている素材で、生産量の約 90% を占めています。その人気の理由は、その強度、耐久性、そして手頃な価格です。スチール製ファスナーにはさまざまなグレードがあり、そのままの形状で使用することも、亜鉛メッキや亜鉛メッキなどの表面処理を施して使用することもできます。
業界では一般的にファスナーに炭素鋼が使用されており、強度と用途に基づいた 3 つの標準 SAE グレードがあります。
合金鋼ファスナーは、航空宇宙、重機、高温環境などの高負荷または重要な用途で一般的に使用されます。ただし、特に極端な条件下での脆化を避けるために適切な設計が必要です。
ステンレス鋼は、クロム含有量を高く混合することにより、自然に保護酸化層を形成し、優れた耐食性を実現します。このため、ステンレススチール製ファスナーは過酷な環境に最適な選択肢となります。最も一般的に使用されるグレードには次のようなものがあります。
真鍮製のファスナーは耐食性が高く、熱伝導性、電気伝導性に優れています。これらは、電気部品、装飾器具、配管システムや船舶用ハードウェアなどの水にさらされる用途でよく使用されます。
軽量、耐食性、非磁性のアルミニウム製ファスナーは、航空宇宙産業や自動車産業など、重量が懸念される用途に最適です。これらのファスナーは、酸化物層の自己修復特性のおかげで、傷や損傷があっても耐食性を維持できます。メーカーは強度と機能性を高めるために、アルミニウムを亜鉛、シリコン、マグネシウム、鉄、銅などの元素と組み合わせることがよくあります。
チタン製ファスナーは、優れた強度対重量比と極端な条件に対する耐性があるため、好まれています。コストは高いにもかかわらず、航空宇宙、医療、化学産業における要求の厳しい用途では依然として最優先の選択肢です。
プラスチックファスナーは通常、金属に比べて強度が低いですが、電気絶縁性、断熱性、耐薬品性、軽量構造などの独特の特性により広く使用されています。
安全で耐久性のあるアセンブリを確保するには、適切なファスナーを選択することが重要です。考慮すべき重要な要素は次のとおりです。
最終的に選択するファスナーのタイプは、常にアプリケーションの特定の要件によって異なります。建設や重機などの過酷な用途には合金鋼ボルトが最適ですが、軽量な接続にはネジやリベットで十分な場合があります。環境に優しい。条件も重要です。ステンレス鋼や亜鉛メッキのファスナーは屋外環境では錆びにくいのに対し、 チタンや耐熱合金は高温環境でより優れた性能を発揮します。振動も考慮することを忘れないでください。 振動の多い場所では、一般的なトルク ロックナットが留め具をしっかりと固定し、緩みを防ぎます。
ねじのタイプは、適切なファスナーを選択する際の重要な要素です。 並目ねじ (UNC) は、少ない回転数でより速く締められ、剥がれにくく、木材や柔らかい金属などの材料に適しています。逆に細目ねじ(UNF) は噛み合いが良く引張強度が高いため、精密機器やより強い保持力が必要な場合に有利です。
ファスナーの材質は、その性能、耐久性、用途への適合性を確保するための決定的な要素です。 炭素鋼は強度とコスト効率の点で一般的な選択肢ですが、合金鋼は高応力環境向けの強度を高めますが、その脆さには注意が必要です。水処理施設など、湿気や化学物質にさらされるプロジェクトの場合は、 耐食性に優れたステンレススチールのファスナーが最適です。 真鍮などの素材は耐食性と優れた導電性を備えています。軽量化が重要な用途の場合はアルミニウム、チタン、 プラスチックを検討できます。
上記の要素に加えて、コスト、設置時間、利便性など、考慮すべき要素は他にもたくさんあります。どのファスナーがお客様のニーズに最適であるかがまだ不明な場合は、お気軽に Chiggo までお問い合わせください。当社の専門チームが常に待機し、専門的なアドバイスを提供し、お客様が最良の選択をできるようお手伝いいたします。
剛性の弾性率と呼ばれることもあるせん断弾性率は、せん断力にさらされたときに材料がどれほど硬くなるかを測定する基本的な材料特性です。日常的には、ある部分が別の部分に平行にスライドすると、変化を形作る物質がどれほど耐性があるかを説明します。この記事では、せん断弾性率、それがどのように計算されているか、それが他の弾性係数とどのように比較されるかを、それを明確にするための実際のエンジニアリングの例を説明します。 せん断弾性率とは何ですか? 図では、ブロックは下部に固定され、力Fは上面に平行に適用されます。この力は水平変位Δxを引き起こし、ブロックは斜めの形状に変形します。傾斜角θは、形状がどれだけ歪んでいるかを記述するせん断ひずみ(γ)を表します。 せん断応力(τ)は、力が作用する表面積Aで分割された適用力です。 τ= f / a せん断ひずみ(γ)は、ブロックの高さに対する水平変位の比率です。 γ=Δx / L(小角の場合、ラジアンのθ≈γ) μまたはSで示されることもあるせん断弾性率(g)は、このタイプの歪みに対する材料の耐性がどれほど耐性であるかを測定します。せん断ストレスとせん断ひずみの比として定義されます。 g =τ /γ=(f / a) /(Δx / l)=(f・l) /(a・Δx) SIシステムでは、せん断弾性率の単位はPascal(PA)であり、1平方メートルあたり1つのニュートン(n/m²)に等しい。 Pascalは非常に小さなユニットであるため、固体材料のせん断弾性率は通常非常に大きいです。このため、エンジニアと科学者は通常、Gigapascals(GPA)でGを発現します。ここで、1 GPA = 10〜Paです。 せん断弾性率 以下の表は、一般的な材料の典型的なせん断弾性率を示しています。 材料せん断弾性率(GPA)アルミニウム26–27真鍮35–41炭素鋼79–82銅44–48鉛5–6ステンレス鋼74–79錫〜18チタン(純粋)41–45コンクリート8–12ガラス(ソーダ - ライム)26–30ウッド(ダグラスファー)0.6–1.2ナイロン(未熟練)0.7–1.1ポリカーボネート0.8–0.9ポリエチレン0.1–0.3ゴム0.0003–0.001ダイヤモンド480–520 これらの数字は、剛性がどれだけ異なる材料が異なるかを示しています。金属は、数十のギガパスカルにせん断弾性率を持っている傾向があります。セラミックとガラスは同様の範囲にありますが、コンクリートはやや低いです。プラスチックには通常、約1 GPA以下があります。さらに柔らかいのはゴムとエラストマーであり、せん断弾性率はメガパスカルの範囲にのみです。最上部では、ダイヤモンドは何百人ものギガパスカルに到達し、最も硬い既知の材料の1つです。 高せん断弾性率を持つ材料は、変形またはねじれを強く抵抗します。これが、橋、建物、航空機のフレームなどの構造に鋼とチタンの合金が不可欠である理由です。それらの剛性は、梁とファスナーが重い負荷の下で曲げたりせん断したりしないようにします。ガラスとセラミックは、脆弱ですが、比較的高い弾性率を持っていることからも恩恵を受けます。レンズや半導体ウェーハなどのアプリケーションで正確な形状を維持するのに役立ちます。非常に高いせん断弾性率を持つダイヤモンドは、大きな力の下でもほとんど弾性ひずみを受けません。これが、ダイヤモンド切削工具が鋭いままである理由です。 一方、柔軟性が利点である場合、低せん断弾性率を持つ材料が選択されます。ゴムやその他のエラストマーは、振動ダンパー、アザラシ、および地震ベースのアイソレーターに使用されます。これにより、柔らかさが簡単にせん断し、エネルギーを吸収できるためです。ポリエチレンやナイロンなどのポリマーは、柔軟性と強度のバランスをとっています。そのため、軽量構造と衝撃耐性部品で広く使用されています。木材のような天然素材でさえ、強い方向性の違いを示しています。穀物全体で、そのせん断弾性率はそれに沿ってはるかに低く、ビルダーはせん断力の下での分割を避けるためにこれを説明する必要があります。 せん断弾性量計算 さまざまな試験方法を使用してせん断弾性gを決定することができ、選択は材料と静的値または動的値が必要かどうかに依存します。金属およびその他の等方性固体の場合、一般的なアプローチは、ロッドまたは薄壁のチューブでの静的ねじれテストです。ねじれの角度と適用トルクの勾配により、Gが与えられます。ASTME143は、構造材料の室温手順を指定します。 動的測定のために、ねじれ振り子を使用できます。標本質量システムの振動期間を測定し、(複雑な)せん断弾性率に関連付けます。 ASTM D2236は、プラスチックのこのアプローチを説明するレガシー基準です。 繊維強化複合材料の場合、ASTM D5379(IOSIPESCU)やASTM D7078(V-Notched Rail Shear)などのVノッチングメソッドで面内せん断弾性率が得られます。 ASTM D4255(レールせん断)は、ポリマーマトリックス複合材料にも広く使用されています。 ASTM A938は、ねじれ性能(延性など)を評価することを目的とした金属ワイヤのねじれテストであることに注意してください。 Gを決定するための標準的な方法ではありません。 Gが直接測定されず、他のデータから計算される場合があります。等方性材料の場合ヤングモジュラスeポアソンの比率ν、 g = e […]
金属スプーンについて考えてください。ハンドルを軽く押すと、少し曲がりますが、手放すとすぐに戻ってきます。ただし、より強く押すと、スプーンが永続的な曲がり角になります。その時点で、あなたはスプーンの降伏強度を通り過ぎました。この記事では、降伏強度の意味、引張強度や弾性限界などの関連するアイデアとどのように比較されるか、そしてそれが現実の世界で重要な理由を探ります。また、降伏強度と一般的な材料の典型的な値に影響を与える要因についても見ていきます。 降伏強度とは 降伏強度は、材料が永続的に変形し始める応力レベルです。簡単に言えば、それは素材が跳ね返り(弾性挙動)を止め、完全に逆転しない方法で曲げまたは伸びを開始するポイントです。降伏強度の下で、力を除去すると、材料は元の形状に戻ります(その長さに戻るスプリングのように)。降伏強度を超えて、材料は永遠に変化します。 これをよりよく理解するために、ストレスと緊張という2つの重要な用語を分解しましょう。ストレスは、断面領域で割った材料、または単に材料内の力の強度に加えられる力です。あなたはそれを圧力と考えることができますが、ストレスは外部のプッシュではなく内部反応を説明します。ひずみとは、長さの変化を元の長さで割ったように計算される材料の変化の形状です。ひずみに対するストレスをプロットすると、aが取得されますストレス - ひずみ曲線これは、負荷が増加するにつれて材料がどのように動作するかを示しています。 ストレス - ひずみ曲線の初期の部分では、材料は弾力的に振る舞います。ストレスとひずみは比例し(フックの法則の下で直線)、荷重が除去されると材料は元の形状に戻ります。この領域の終わりは弾性限界です。降伏強度は、この移行を弾性の挙動からプラスチックの挙動に示し、可逆的な変形と不可逆的な変形の境界を定義します。 軟鋼のような多くの延性金属の場合、この移行は鋭いものではなく徐々にです。降伏強度を一貫して定義するために、エンジニアはしばしば0.2%のオフセット方法を使用します。それらは、曲線の弾性部分に平行なラインを描画しますが、0.2%のひずみによってシフトします。この線と交差する点は、曲線と交差する点が降伏強度としてとられます。これは、明確な降伏点が存在しない場合でも、降伏強度を測定するための実用的で標準化された方法を提供します。 降伏強度と引張強度 定義したように、降伏強度は、材料が永続的に変形し始めるストレスです。しばしば究極の引張強度(UTS)と呼ばれる引張強度は、材料が壊れる前に耐えることができる最大応力です。その点に達すると、材料は追加の負荷を運ぶことができなくなり、すぐに骨折が続きます。 どちらも材料がストレスにどのように反応するかを説明しますが、それらは異なる限界を表しています。降伏強度は永久変形の開始を示しますが、引張強度は限界点を示します。たとえば、スチールロッドを引っ張ると、最初に伸長します。降伏強度を通り過ぎると、永続的な伸びが必要です。張力強度に達するまで続けてください。そうすれば、ロッドは最終的にスナップします。 実用的な設計では、エンジニアは、コンポーネントが持続的な損傷をせずに機能的なままでなければならないため、降伏強度に重点を置いています。引張強度は依然として重要ですが、通常、使用中には決して発生しない故障条件を示します。 引張強度に加えて、降伏強度は、しばしば他の2つの概念と混同されます。 弾性制限:弾性制限は、荷重が除去されると、元の形状に完全に戻っている間に材料が取ることができる最大応力です。この制限以下では、すべての変形は弾力性があり、可逆的です。多くの場合、弾性限界は降伏強度に非常に近いため、2つは同じように扱われます。弾性制限は正確な物理的境界を示しますが、降伏強度は一貫して測定して安全な設計に使用できる標準化されたエンジニアリング値を提供します。 比例制限:この用語は、応力 - 伸縮曲線の線形部分に由来します。比例制限は、フックの法則に従って、ストレスと緊張が直接的な割合で増加するポイントです。通常、弾性制限と降伏強度の両方の前に発生します。この点を超えて、曲線は曲がり始めます。関係はもはや完全に線形ではありませんが、材料はまだ弾力性があります。 降伏強度に影響を与える要因 降伏強度は固定されたままではありません。いくつかの材料と環境要因に応じて変化する可能性があります。ここに最も一般的なものがあります: 材料組成(合金要素) 金属の構成は、その降伏強度に大きな影響を与えます。金属では、合金要素を追加すると、それらを強くすることができます。たとえば、炭素、マンガン、クロムなどの元素が添加されると、鋼は強度を獲得しますが、炭素が多い場合も脆弱になります。アルミニウム合金は、銅、マグネシウム、亜鉛などの元素から強度を得ます。これらの追加により、金属内に脱臼の動きをブロックする小さな障害物(プラスチック変形の原子レベルのキャリア)が生じ、降伏強度が高まります。簡単に言えば、金属の「レシピ」により、曲がりが難しくなり、簡単になります。そのため、ソーダ缶のアルミニウムは柔らかく柔軟であり、航空機の翼のアルミニウムは他の金属と混合しているため、降伏強度がはるかに高くなっています。 粒サイズ(微細構造) 一般に、穀物が小さいことはより高い強度を意味し、ホールとペッチの関係によって記述されている傾向です。その理由は、穀物の境界が転位運動の障壁として機能するため、より細かい粒子はより多くの障害物を生み出し、金属をより強くすることです。冶金学者は、制御された固化または熱機械処理を通じて穀物のサイズを改良します。たとえば、多くの高強度の鋼と超合金は非常に細かい穀物で設計されており、非常に大きな穀物を持つ金属がより簡単に収量する傾向があります。 熱処理 金属の加熱と冷却の方法は、その構造を変えることができ、したがってその降伏強度を変えることができます。アニーリング(遅い加熱と冷却)金属を柔らかくし、降伏強度を低下させ、内部応力を緩和することにより延性を引き出します。消光(水または油の急速な冷却)は、構造を硬くてストレスのある状態にロックし、降伏強度を大幅に増加させますが、金属を脆くします。バランスを回復するために、クエンチングの後に続くことがよくあります気性、タフネスを改善する中程度の再加熱ステップ。 適切な熱処理を選択することにより、メーカーはアプリケーションに応じて金属をより硬く、または柔らかくすることができます。たとえば、スプリングスチールは高降伏強度を達成するために処理されるため、変形せずに曲げることができますが、スチールワイヤーは最初にアニールされ、簡単な形をしてから後で強化します。 製造プロセス(コールドワーク) 材料が機械的にどのように処理されるかは、降伏強度を変えることもできます。コールドワーク(コールドローリングやコールドドローイングなど、室温で金属を変形させる)は、作業硬化と呼ばれるメカニズムを介して降伏強度を高めます。金属を卑劣に変形させると、その結晶構造に転位と絡み合いを導入します。これが、コールドロールスチールが通常、ホットロールされた(作業中ではない)状態で同じスチールよりも高い降伏強度を持っている理由です。 温度と環境 経験則として、ほとんどの金属は高温で降伏強度を失います。熱は金属を柔らかくするので、力を少なくして変形させることができます。非常に低い温度では、一部の材料はより脆くなります。粗末に変形する能力は減少するため、降伏応力は技術的な意味で増加する可能性がありますが、収量よりも骨折する可能性が高くなります。 腐食や放射線などの環境要因も材料を分解する可能性があります。腐食はピットを作成したり、断面積を減らしたりし、収量する前に構造が処理できる荷重を効果的に削減します。たとえば、錆びた鋼鉄の梁は、腐食されていない荷物よりも低い負荷の下で生成される可能性があります。これは、その有効厚さが減少し、錆からマイクロクラックがストレスを集中させる可能性があるためです。 異なる材料の降伏強度 ストレス - ひずみ曲線は、異なる材料が荷重にどのように反応するかを比較する簡単な方法を提供します。上の図では、4つの典型的な動作を見ることができます。応力が増加するにつれてそれぞれが異なって反応し、その降伏強度はそれらの違いを反映します。 脆性材料:ガラスやセラミックなどの脆性材料は、塑性変形がほとんどありません。彼らは突然骨折するまでほぼ直線に従います。彼らの降伏強度は、彼らが実際に「収量」していないからです。 強いが延性材料ではない:高強度鋼などの一部の材料は、高いストレスに耐えることができますが、延性が限られていることを示します。彼らは高降伏強度を持っています。つまり、永続的な変形によく抵抗しますが、壊れる前にあまり伸びません。 延性材料:軟鋼やアルミニウム合金などの金属は延性があります。それらは特定の応力レベルで屈し、その後、壊れる前に著しい塑性変形を受けます。彼らの降伏強度は、究極の引張強度よりも低く、エンジニアに設計するための安全な「バッファーゾーン」を提供します。 プラスチック材料(ソフトポリマー):ソフトプラスチックとポリマーの降伏強度は比較的低いです。それらは小さなストレスの下で簡単に変形し、明確な降伏点を示さない場合があります。代わりに、それらは骨折への鋭い移行を示すことなく着実に伸びています。 これらの一般的な行動は、実際の降伏強度値を見るとより明確になります。以下の表には、一般的なエンジニアリング材料と比較のための典型的な降伏強度が示されています。 材料降伏強度(MPA)鋼鉄〜448ステンレス鋼〜520銅〜70真鍮〜200+アルミニウム合金〜414鋳鉄〜130典型的な降伏強度値 現実世界で降伏強度が重要な理由 降伏強度は、荷重の下に形状を保持するために材料が必要なときはいつでも重要です。ここにそれが重要な役割を果たすいくつかの領域があります: 建設とインフラストラクチャ 建物や橋では、高降伏強度のために鋼鉄の梁やその他の金属部品が選択されているため、車両、風、さらには地震からの重い荷物を曲げたり、垂れ下げたりすることなく運ぶことができます。通常の使用中にビームが生成された場合、構造の安全性は危険にさらされます。そのため、エンジニアは常にストレスを降伏点をはるかに下回るマージンで設計します。 自動車の安全 現代の車は、衝突中に制御された方法で生成するように設計されたクランプルゾーンを使用します。衝撃力がフロントパネルまたはリアパネルの降伏強度を超えると、これらの領域は、完全な力を乗客に渡すのではなく、永久変形を通してエネルギーをしゃがみ、吸収します。同時に、キャビンは、居住者を保護したままにして、降伏に抵抗する高強度の材料で補強されます。 航空宇宙と輸送 航空機の着陸装置は、永久に曲がることなくタッチダウンの衝撃に耐える必要があります。胴体と翼は、材料が十分な降伏強度を欠いている場合に損傷を引き起こす繰り返しの加圧サイクルと空力的な力に直面します。強度と低重量のバランスをとるために、エンジニアはしばしばアルミニウムやチタンなどの高度な合金に目を向けます。同じ原則は、レールや船体の列車に適用されます。船体は、激しい使用の下で硬直し、永続的な曲がり角やへこみに抵抗する必要があります。 毎日の製品 レンチやドライバーなどの高品質のツールは、高利回りの強さの鋼で作られているため、通常の使用で曲がらないようにしますが、ストレスが降伏強度を超えると、より安価なツールはしばしば恒久的な曲がりを伸ばします。同じアイデアがシンプルなコートハンガーで見ることができます。軽い荷重が戻ってきますが、重い荷物や鋭い曲がりは降伏点を超えて押し進め、形状の永続的な変化を残します。降伏強度は、自転車フレームのような大きなアイテムの設計も導きます。これは、ライダーの重量を運ぶ必要があり、形を屈することなくバンプを吸収する必要があります。 Chiggoを使用して作業します 正確な降伏強度値を日常的なアプリケーションに要求する軽量航空宇宙コンポーネントを設計する場合でも、Chiggoはそれを実現するための専門知識と製造機能を提供します。私たちのチームはAdvancedを組み合わせていますCNC加工、3Dプリント、および深い材料の知識を備えた射出成形を使用して、あなたの部品が意図したとおりに正確に機能することを保証します。今すぐCADファイルをアップロードして、すぐに見積もりを取得してください!
CNC 加工は、コンピュータ制御のツールを使用してさまざまな材料から精密部品を作成する多用途の製造プロセスです。これらの材料はCNC加工の基礎を構成し、加工結果に直接影響を与えます。したがって、多様な CNC 加工材料を認識し、特定の用途に適切な材料を見極める能力を身に付けることが重要です。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español