産業用途では、金属の選択は、強度、硬度、密度などの機械的特性だけでなく、熱特性にも影響されます。考慮すべき最も重要な熱特性の1つは、金属の融点です。
たとえば、炉のコンポーネント、ジェットエンジン燃料ノズル、排気システムは、金属が溶けた場合に壊滅的に失敗する可能性があります。結果として、オリフィスの詰まりやエンジンの故障が発生する可能性があります。融点は、製錬、溶接、鋳造などの製造プロセスでも重要です。ここでは、金属が液体の形である必要があります。これには、溶融金属の極端な熱に耐えるように設計されたツールが必要です。金属は、融点以下の温度でクリープ誘発性の骨折に苦しむ可能性がありますが、デザイナーはしばしば合金を選択するときにベンチマークとして融点を使用します。
融点は、固体が大気圧下で液体に移行し始める最も低い温度です。この温度では、固形相と液相の両方が平衡状態で共存します。融点に達すると、金属が完全に溶けるまで追加の熱は温度を上げません。これは、相変化中に供給される熱が融合の潜熱を克服するために使用されるためです。
異なる金属には、融点が異なり、原子構造と結合強度によって決定されます。しっかりと詰め込まれた原子配置を備えた金属は、一般に融点が高くなります。たとえば、タングステンは、3422°Cで最高の1つです。金属結合の強度は、原子間の引力を克服し、金属を溶かすために必要なエネルギーの量に影響します。たとえば、プラチナや金などの金属は、結合力が弱いため、鉄やタングステンなどの遷移金属と比較して融点が比較的低いです。
金属の融点は、通常の条件では一般に安定しています。ただし、特定の要因は特定の状況下でそれを変更できます。 1つの一般的な方法はです合金 - 純粋な金属に他の要素を加えて、異なる融解範囲の新しい材料を形成します。たとえば、スズを銅と混合して青銅を生成すると、純粋な銅と比較して全体的な融点が低下します。
不純物また、顕著な効果を持つこともできます。微量の外部要素でさえ、物質に応じてより高くまたは低い融解温度を崩壊させ、融解温度をシフトする可能性があります。
物理的な形問題も同様です。ナノ粒子、薄膜、または粉末の形の金属は、表面積が高く原子挙動の変化により、バルクの対応物よりも低い温度で溶けます。
ついに、極度の圧力原子がどのように相互作用するかを変えることができ、通常、原子構造を圧縮することで融点を上げます。これは日常のアプリケーションではめったに懸念事項ではありませんが、航空宇宙、深海掘削、高圧物理学研究などの高ストレス環境の材料選択と安全性評価における重要な考慮事項になります。
| 金属/合金 | 融点(°C) | 融点(°F) |
| アルミニウム | 660 | 1220 |
| 真鍮(Cu-Zn合金) | 〜930(構成依存) | 〜1710 |
| ブロンズ(Cu-SN合金) | 〜913 | 〜1675 |
| 炭素鋼 | 1425–1540 | 2600–2800 |
| 鋳鉄 | 〜1204 | 〜2200 |
| 銅 | 1084 | 1983年 |
| 金 | 1064 | 1947年 |
| 鉄 | 1538 | 2800 |
| 鉛 | 328 | 622 |
| ニッケル | 1453 | 2647 |
| 銀 | 961 | 1762 |
| ステンレス鋼 | 1375–1530(グレード依存) | 2500–2785 |
| 錫 | 232 | 450 |
| チタン | 1670 | 3038 |
| タングステン | 〜3400 | 〜6150 |
| 亜鉛 | 420 | 787 |
| 金属/合金 | 融点(°C) | 融点(°F) |
| タングステン(w) | 3400 | 6150 |
| Rhenium(re) | 3186 | 5767 |
| オスミウム(OS) | 3025 | 5477 |
| タンタル(TA) | 2980 | 5400 |
| モリブデン(MO) | 2620 | 4750 |
| ニオビウム(NB) | 2470 | 4473 |
| イリジウム(IR) | 2446 | 4435 |
| ルテニウム(ru) | 2334 | 4233 |
| クロム(CR) | 1860年 | 3380 |
| バナジウム(V) | 1910年 | 3470 |
| ロジウム(RH) | 1965年 | 3569 |
| チタン(TI) | 1670 | 3040 |
| コバルト(co) | 1495 | 2723 |
| ニッケル(NI) | 1453 | 2647 |
| パラジウム(PD) | 1555 | 2831 |
| プラチナ(PT) | 1770 | 3220 |
| トリウム(TH) | 1750 | 3180 |
| ハステロイ(合金) | 1320–1350 | 2410–2460 |
| インコルエル(合金) | 1390–1425 | 2540–2600 |
| インコロイ(合金) | 1390–1425 | 2540–2600 |
| 炭素鋼 | 1371–1540 | 2500–2800 |
| 錬鉄 | 1482–1593 | 2700–2900 |
| ステンレス鋼 | 〜1510 | 〜2750 |
| モネル(合金) | 1300–1350 | 2370–2460 |
| ベリリウム(be) | 1285 | 2345 |
| マンガン(MN) | 1244 | 2271 |
| ウラン(u) | 1132 | 2070 |
| カプロニッケル | 1170–1240 | 2138–2264 |
| 延性鉄 | 〜1149 | 〜2100 |
| 鋳鉄 | 1127–1204 | 2060–2200 |
| ゴールド(au) | 1064 | 1945年 |
| 銅(cu) | 1084 | 1983年 |
| シルバー(AG) | 961 | 1761 |
| 赤い真鍮 | 990–1025 | 1810–1880 |
| ブロンズ | 〜913 | 〜1675 |
| 黄色の真鍮 | 905–932 | 1660–1710 |
| 海軍本部の真鍮 | 900–940 | 1650–1720 |
| コインシルバー | 879 | 1614 |
| スターリングシルバー | 893 | 1640 |
| マンガンブロンズ | 865–890 | 1590–1630 |
| ベリリウム銅 | 865–955 | 1587–1750 |
| アルミブロンズ | 600–655 | 1190–1215 |
| アルミニウム(純粋) | 660 | 1220 |
| マグネシウム(mg) | 650 | 1200 |
| プルトニウム(PU) | 〜640 | 〜1184 |
| アンチモン(SB) | 630 | 1166 |
| マグネシウム合金 | 349–649 | 660–1200 |
| 亜鉛(ZN) | 420 | 787 |
| カドミウム(CD) | 321 | 610 |
| ビスマス(bi) | 272 | 521 |
| バビット(合金) | 〜249 | 〜480 |
| スズ(sn) | 232 | 450 |
| はんだ(PB-SN合金) | 〜215 | 〜419 |
| セレン(SE)* | 217 | 423 |
| インジウム(in) | 157 | 315 |
| ナトリウム(NA) | 98 | 208 |
| カリウム(K) | 63 | 145 |
| ガリウム(GA) | 〜30 | 〜86 |
| セシウム(CS) | 〜28 | 〜83 |
| 水銀(HG) | -39 | -38 |
重要なテイクアウト:
他のすべての3D印刷プロセス(ポリマー3Dプリントなど)と同様に、金属3Dプリンターは、デジタル3Dデザインに基づいて一度に材料を追加することにより、材料を追加することで部品を構築します。今回のみ、プロセスはプラスチックの代わりに金属粉末、ワイヤー、またはポリマーに結合したフィラメントを使用します。
金属成分は、酸素、水分、高温、機械的摩耗への暴露により、時間とともに加齢と変色する傾向があります。研磨は、腐食開始部位を最小限に抑え、表面汚染を防ぐ鏡の滑らかな表面を作成します。結果として得られる仕上げは、装飾的な魅力を高め、光学反射器などの機能的使用に高い反射率を提供します。さらに、表面の不規則性を除去することにより、研磨はストレス濃縮器として作用するマイクロノッチを排除し、それによって疲労寿命を改善します。
ポリアミドは、アミド結合を含むすべてのポリマーの一般的な用語です。ナイロンはもともと、産業用および消費者用途向けに開発された合成ポリアミドPA6およびPA66のデュポンの商標でした。ナイロンはポリアミドのサブセットですが、2つの用語は完全に交換可能ではありません。この記事では、ポリアミドとナイロンの関係を調査し、それらの重要な特性とパフォーマンスの詳細な比較を提供します。 ポリアミドとは何ですか? ポリアミド(PA)は、繰り返し単位がアミド(-CO-NH-)結合によってリンクされている高分子量ポリマーのクラスです。ポリアミドは自然または合成のいずれかです。天然のポリアミドには、羊毛、絹、コラーゲン、ケラチンが含まれます。合成ポリアミドは、3つのカテゴリに分類できます。 脂肪族ポリアミド(PA6、PA66、PA11、PA12):一般工学にぴったりです。それらは、強度、靭性、耐摩耗性、および簡単な処理のバランスを妥当なコストでバランスさせます。 芳香族ポリアミド(Kevlar®やNomex®などのアラミド):極端なパフォーマンスに最適です。 Kevlar®のようなパラアミッドは、例外的な引張強度と耐抵抗を提供しますが、Nomex®のようなメタアラミッドは、固有の火炎耐性と熱安定性に充てられています。それらは高価であり、溶融処理できないため、一部の形状と製造ルートはより制限されています。 半芳香族ポリアミド(PPA、PA6T、PA6/12T):高温エンジニアリングを対象としています。それらは、高温の剛性と寸法を維持し、多くの自動車液をうまく処理します。それらは溶融処理(注入/押し出し)を処理することができますが、より高い溶融温度で動作し、慎重に乾燥する必要があります。脂肪族PAとアラミッドの間にはコストがかかります。 それらは、分子鎖間の水素結合による結晶性、良好な熱耐性と耐薬品性、および水分吸収の傾向を高めていますが、これらの特性の程度はタイプによって大きく異なります。それらの機械的特性(引張強度、弾性弾性率、破壊時の伸び)は、鎖の剛性と結晶性に密接に結び付けられています。これらは高いほど、材料が硬くて強くなりますが、より脆弱です。値が低いと、より柔らかく、より丈夫な素材が生じます。 ポリアミドの一般的なグレード 以下は、最も一般的な合成ポリアミドグレード、それらの重要な特性、および典型的なアプリケーションの概要です。 学年一般名モノマー炭素数重合引張強度(MPA)弾性率(GPA)融解温度(°C)HDT(°C、乾燥、1.8 MPa)水分吸収(%) @50%RH耐薬品性PA6ナイロン6(合成)Caprolactam(ε-Caprolactam)6リングオープン重合60–751.6–2.5220–22565–752.4–3.2(〜9–11%飽和) 優れたオイル/燃料抵抗;強酸/塩基に敏感PA66ナイロン6,6ヘキサメチレンジアミン +アディピン酸6+6凝縮重合70–852.5–3.0255–26575–852.5–3.5(〜8–9%飽和) PA6と同様に、わずかに優れた溶媒耐性PA11バイオベースのポリアミド11-アミナウンドカノ酸11自己凝縮50–65 1.2–1.8185–19055–651.5–2.0優れた耐薬品性、塩スプレー、耐性耐性PA12長鎖ポリアミドラウリル・ラクタム12リングオープン重合45–551.6–1.8178–18050–600.5–1.0PA11に似ています。優れた耐薬品性PA46高テンプポリアミドテトラメチレンジアミン +アディピン酸4+6凝縮重合80–1003.0–3.5〜295160–1702.0–3.0(飽和すると高く) 優れた高テンプル、オイル、耐摩耗性ケブラーパラアミッドP-フェニレンジアミン +テレフタロイル塩化物 - 凝縮重合3000-360070–130融解なし; 500°Cを超える分解 最大300°Cまでのプロパティを保持します。 500°Cを超える分解 3–7(水分回復 @65%RH) ほとんどの化学物質に耐性があります。 UV敏感 ポリアミドを識別する方法 簡単なハンズオンテストでポリアミドをすばやくスクリーニングします - 火傷テストで始まります(溶けてから黄色で傾けた青色の炎で燃やし、セロリのような臭いを放ち、硬い黒いビーズを残します)またはホットニードルテスト(同じ匂いできれいに柔らかくなります)。 PA6/PA66(密度≈1.13–1.15 g/cm³)は水に沈み、PA11/PA12(≈1.01–1.03 g/cm³)のような長鎖グレードは水または希釈アルコールに浮かぶ可能性があることに注意してください。決定的なラボIDの場合、FTIR分光法を使用して、特徴的なN – Hストレッチ(〜3300cm⁻¹)およびC = Oストレッチ(〜1630cm⁻¹)を検出し、DSCを使用して融点(PA12≈178°C、PA6≈215°C、PA66≈260°C)を確認します。 ナイロンとは何ですか? ナイロンは合成ポリアミドの最も有名なサブセットです。実際には、人々がプラスチックやテキスタイルで「ポリアミド」と言うとき、彼らはほとんど常にナイロン型材料を指しています。 最も広く使用されているコマーシャルナイロン - ナイロン6、ナイロン6/6、ナイロン11、およびナイロン12などは、脂肪族ポリアミドです。それらの半結晶性微細構造と強力な水素結合により、一般工学の強度、靭性、耐摩耗性、良好な熱と耐薬品性の優れた組み合わせが得られます。多目的で信頼できる、それらは広範囲の従来の製造および添加剤技術を通じて処理することができ、それらをの家族の長年の主食にすることができますエンジニアリングプラスチック。 ナイロンを識別する方法 全体として、ナイロンとポリアミドを識別するために使用される方法は、フィールドとラボでの両方で、本質的に同じです。主な違いは、ナイロングレードが正確な区別のためにより正確な基準を必要とすることです。実験室の設定では、融点を測定し、特定のグレードを特定するために、微分スキャン熱量測定(DSC)が一般的に使用されます。密度テストは、ショートチェーンナイロン(PA6/PA66)から長鎖ナイロン(PA11/PA12)を分離するための簡単な方法を提供します。さらなる確認が必要な場合、X線回折(XRD)や溶融流量(MFR)分析などの手法を適用して、6シリーズと11/12シリーズの材料をより正確に区別できます。 ポリアミドとナイロンの一般的な特性 「ポリアミド」と「ナイロン」は、しばしば同じ意味で使用されますが、ナイロンはポリアミドの1つのタイプにすぎません。このセクションでは、それらの共通のプロパティについて詳しく説明します。 構成と構造 ポリアミドは、バックボーンでアミド(-CO-NH-)結合を繰り返すことで特徴付けられますが、多くのモノマーから合成できます。脂肪族ポリアミドは、ε-カプロラクタム、ヘキサメチレンジアミンを加えたヘキサメチレンジアミン、または11-アミナウンドカノ酸などの直線鎖ユニットから構築されていますが、芳香族アラミッドは硬いベンゼンリングを連鎖に取り入れています。モノマーと重合法の選択により、鎖の柔軟性、結晶化度、水素結合密度が決定されます。これは、機械的強度、熱安定性、油、燃料、および多くの化学物質に対する耐性に影響を与える要因です。 ナイロンは、狭いモノマーセットから作られた脂肪族ポリアミドのサブセットです。一般的なナイロングレードには、ヘキサメチレンジアミンにアディピン酸を凝縮することにより生成されるPA6とPA6,6が含まれます。それらの均一なチェーンセグメントと強力な水素結合は、引張強度、靭性、耐摩耗性、および中程度の耐熱性のバランスの取れた混合をもたらす半結晶ネットワークを作成します。 融点 ポリアミド(ナイロンを含む)の融点は、モノマーの化学構造、結晶性の程度、水素結合密度、鎖の柔軟性の4つの主な要因によって決定されます。一般に、より多くの定期的に間隔を置いた水素結合とより高い結晶性が融解温度を上昇させます。逆に、結晶の形成を破壊する柔軟なチェーンセグメントが融点を低下させます。たとえば、PA11やPA12などの長鎖、低結晶性ポリアミドは178〜180°C前後に溶け、PA6やPA6/6のような一般的なナイロンは、約215°Cと265°Cの間で溶融し、ケブラーなどの硬質アロマティックポリアミドは500°Cを超えて溶けません。 引張強度と靭性 一般に、ナイロンは強度と靭性のバランスの取れた組み合わせを提供し、他のポリアミドはより広範なパフォーマンスチューニングを提供します。高強度の端で、Kevlar®などの芳香族アラミッドは、最大3.6 GPa(〜3600 MPa)までの繊維引張強度を達成し、弾道衝撃下でのエネルギー吸収に優れています。反対側では、PA11やPA12のような長鎖脂肪族ポリアミドは、優れた延性と高い衝撃耐性のために引張強度(〜45〜60 MPa)を交換します。一般的なナイロン(PA6およびPA6,6)は真ん中に真っ直ぐに横たわっており、約60〜85 MPaの乾燥した引張強度とバランスの取れた耐衝撃性を提供し、耐荷重く衝撃耐性成形部品に人気のある選択肢となっています。 耐摩耗性 ポリアミドファミリー全体は、良好な耐摩耗性を提供します。 […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español