アルミニウムは、さまざまな産業でさまざまな目的で一般的に使用される非鉄金属です。航空機の部品から複雑な家庭用電化製品に至るまで、アルミニウムの多用途性は比類のありません。そのユニークな特性と適応性により、軽量で耐久性があり、精密に設計されたコンポーネントを製造するための CNC 加工におけるトップの選択肢となっています。
しかし、なぜ CNC 加工に最適なのでしょうか?これに答えるために、アルミニウムの起源とその合金の役割から始めましょう。

アルミニウムは、地球の地殻に最も豊富に存在する金属元素です。国際アルミニウム協会によると、世界の一次アルミニウムの年間生産量は、2023 年に約 6,700 万トンに達しました。他のほとんどの金属と同様、アルミニウムは鉱石として、主にボーキサイトの形で地殻に存在します。工業用にアルミニウムを抽出するには、2 段階のプロセスが採用されます。まず、バイエル法を使用して、ボーキサイトをアルミナ (酸化アルミニウム) に精製します。次に、アルミナを電気分解して純粋なアルミニウムを生成します。
純アルミニウム (99% 以上) は軽量で展性があり、ほとんどの腐食に対して耐性があり、非磁性であり、熱と電気の優れた伝導体です。ただし、ほとんどの商用アプリケーションには弱すぎます。
この制限を克服するために、アルミニウムをマグネシウム、シリコン、亜鉛、銅などの元素と組み合わせて合金を形成します。これらの合金は、アルミニウムの自然な特性をさらに強化します。さらに、合金元素の組成を調整することにより、アルミニウム合金の特性をさまざまな用途の特定の要件を満たすように調整できます。
次に、CNC 加工にアルミニウムを使用する主な利点を詳しく見てみましょう。

アルミニウムは、柔らかく延性があるため、機械加工が最も簡単な金属の 1 つです。メーカーは、スチールやチタンなどの他の一般的な加工材料よりも 3 倍、さらには 4 倍の速度で加工できます。これは、必要な労力と時間が減り、結果的に生産コストが削減されることを意味します。
さらに、アルミニウムのスムーズな切断動作により、きれいな切りくずが生成され、切断プロセス中の干渉が最小限に抑えられます。これにより、複雑な形状や厳しい公差の正確な製造が容易になります。加工中の変形リスクが低いため高精度が保証され、これは航空宇宙や医療機器などの産業における精密用途に特に価値があります。
アルミニウムは密度が鋼鉄の約 3 分の 1 ですが、強度に優れています。この高い強度対重量比により、自動車、電車、航空機、船舶などの輸送業界で広く使用されています。燃料効率がより優先されるにつれて、外装パネルや内部構造の構造においてより重い金属に代わってアルミニウムがますます使用され、耐久性や強度を犠牲にすることなく軽量化に貢献しています。
アルミニウムは空気にさらされると自然に保護酸化層を形成し、さらなる腐食を防ぎます。この固有の特性により、多くの用途で他の材料に必要となる、重くて高価な防食コーティングの必要性が回避されます。
アルミニウムの耐食性はグレードによって大きく異なり、酸化や化学的損傷に耐える能力に依存することに注意することが重要です。このトピックについては後ほど詳しく説明します。
アルミニウムは、電気的にも熱的にも非常に伝導性の高い材料です。電気的には銅に次ぐ導電率を誇ります。これが、ケーブル、送電、電子機器などの用途、特に軽量の材料が必要とされる用途でアルミニウムが非常に人気がある理由です。
アルミニウムは熱的にも優れた性能を発揮し、熱伝導率は銅の約 60% です。これは、CNC 加工中の過剰な熱の蓄積を防ぐのに役立ち、電子ヒートシンク、自動車エンジン部品、空調システムなどの用途でも役立ちます。
低温で脆くなり強度が低下する一部の材料とは異なり、アルミニウムは氷点下の条件でも機械的特性を良好に維持します。この特性は、宇宙産業や極低温タンクやシステムなどの用途の液化ガス貯蔵において不可欠です。

機械加工されたアルミニウム部品は、スマートフォン、ラップトップ、タブレット、フラットスクリーン TV などの家電製品で特に人気があります。これは、その強度と軽量性だけでなく、その美しさによるものでもあります。アルミニウムは本来、滑らかな銀色の表面を備えており、塗料や色合いを非常によく受け入れます。さらに重要なことは、アルミニウムは、部品上の保護酸化物層を厚くするプロセスである陽極酸化に最適であるということです。
陽極酸化により、機械加工されたアルミニウムの色付けも容易になります。陽極酸化層は多孔質であるため、染料が金属に浸透して結合します。カラーは強靭な酸化層に埋め込まれているため、欠けたり剥がれたりしにくく、仕上がりが長持ちします。
アルミニウムは地球上で最もリサイクル可能な材料の 1 つであり、世界のリサイクル率は 75% を超えています。この高いリサイクル性は、使用済みのアルミニウム部品を品質を大幅に損なうことなく溶解して再利用できることを意味し、廃棄物を削減し、天然資源を節約します。 CNC 加工では、プロセスのサブトラクティブな性質により大量の切りくずや廃材が発生するため、アルミニウムのリサイクル可能性は特に有利です。
前述したように、アルミニウムにはさまざまな合金の種類があります。アルミニウム合金は一般に、銅、マグネシウム、シリコン、亜鉛など、含まれる主な合金元素に基づいてさまざまなグレード (シリーズ) に分類されます。このセクションでは、主な合金元素に基づいた一般的なアルミニウム合金について説明します。
| シリーズ | 主な合金元素 | 主な特徴 | 代表的な用途 |
| 1000 | 99%アルミニウム | 導電性に優れ、耐食性が強く、加工性に優れ、強度は比較的低い | 導電体、化学機器、反射板 |
| 2000年 | 銅 | 高強度と優れた耐疲労性、限定的な耐食性 | 航空宇宙部品、高負荷のスポーツ用品、軍事機器 |
| 3000 | マンガン | 加工性良好、適度な強度、耐食性良好 | 飲料缶、屋根材、調理器具 |
| 4000 | シリコン | 融点が低く、流動特性が良好 | 溶接溶加材、鋳造部品 |
| 5000 | マグネシウム | 優れた耐食性、中強度から高強度、良好な溶接性 | 造船、燃料タンク、海洋構造物 |
| 6000 | マグネシウムとシリコン | 中強度、良好な耐食性、良好な成形性、溶接性 | 構造部品および航空宇宙部品、自動車部品 |
| 7000 | 亜鉛(場合によってはマグネシウム、クロム、銅) | 強度は非常に高いが、耐食性は2000シリーズより劣る | 航空宇宙部品、軍用車両、兵器、高性能部品 |
| 8000 | 各種(リチウム、鉄など) | 元素によるさまざまな特性、特殊な用途 | アルミ箔、医薬品包装材、電池箔 |
アルミニウムのグレードの選択は、アプリケーションの特定の要件によって異なります。
ここではアルミニウム合金の最も一般的な加工方法を紹介します。

CNC フライス加工は、アルミニウム部品を加工するための最も一般的で汎用性の高い方法の 1 つです。回転切削工具を使用してアルミニウムのワークピースから材料を成形します。コンピューター数値制御 (CNC) システム、自動工具交換装置、および工具カルーセルの導入により、これらの機械は複雑な形状、穴、表面輪郭をより高い精度と効率で作成できるようになりました。 CNC フライス盤は、 を備えた 2 ~ 12 軸の構成で利用できます。 3 ~ 5 軸が最も一般的に使用されます。

CNC 旋削は主に、シャフト、ブッシュ、ネジなどのアルミニウム製の円筒形または円錐形の部品を製造するために使用されます。このプロセスでは、アルミニウムのワークピースが回転し、固定された切削工具が材料を除去して目的の形状を実現します。この方法により、比較的短時間で高精度かつ優れた表面仕上げが可能となり、特に大量生産に適しています。 CNC 旋盤で実行される一般的な作業には、円筒旋削、テーパー加工、フェーシング、ねじ切りなどの旋削関連タスクが含まれます。最新の CNC 旋盤は、穴あけ、溝加工、タップ加工などの二次的な操作も実行できるため、より高い汎用性が得られます。

CNC レーザー マシンは、集束レーザー ビームを使用してアルミニウムを燃焼または蒸発させ、きれいでバリのないエッジを高精度で作成します。特に航空宇宙、エレクトロニクス、装飾パネルなどの用途で、複雑なデザイン、鋭い角、厳しい公差を作成するのに適しています。 CNC レーザー切断により、優れた精度とエッジ品質が実現します。ただし、熱による歪みや切断速度の低下により、厚いアルミニウムシートの切断にはあまり効果的ではありません。この制限にもかかわらず、レーザー切断は、薄肉から中厚さのアルミニウム コンポーネントを含むプロジェクトで依然として人気のある選択肢です。

CNC プラズマ切断では、圧縮空気を極度の高温に加熱することで生成される高速プラズマ アークを使用して、厚さ 6 インチまでのアルミニウムを溶解します。コンピューター制御のトーチヘッドが正確な切断パスをたどると同時に、圧縮空気が溶けた材料を吹き飛ばしてきれいな切断を実現します。この方法は高速でコスト効率が高く、操作が比較的簡単です。 CNC プラズマ切断はレーザー切断よりも精度が低く、粗いエッジを滑らかにするために追加の仕上げが必要になる場合がありますが、建設、造船、重工業などの業界では依然として人気のある選択肢です。

レーザーやプラズマ切断とは異なり、ウォータージェット切断は熱を発生しません。これは、研磨材と混合した高圧の水流を使用してアルミニウムを切断する冷間切断プロセスです。この方法では、アルミニウムの焼け、歪み、構造の変化を回避し、アルミニウムの特性を維持します。ウォータージェット切断は、あらゆる厚さのアルミニウムを優れた精度と滑らかなエッジで処理できます。プラズマ切断よりも遅いですが、複雑な設計に最適であり、航空宇宙、自動車、カスタム製造で一般的に使用されており、後処理は最小限で済みます。
アルミニウムはその加工性と多用途性で高く評価されていますが、CNC 加工中に特定の課題が発生する可能性があります。以下は、遭遇する最も一般的な課題の一部です。
アルミニウムは、特に 1000 や 3000 シリーズのような柔らかい材種の場合、加工中に長く連続した切りくずを生成する傾向があります。これらの長い切りくずは絡み合う可能性があり、切削工具に詰まり、加工プロセスを中断し、効率の低下や欠陥を引き起こす可能性があります。これを管理するには、冷却液、送風機、またはチップ管理システムを採用する必要があります。
アルミニウムの展性と柔らかさにより、材料が切削工具のエッジに付着することがあります。これはビルトアップエッジ (BUE) として知られる現象です。この堆積は工具寿命を短縮し、表面仕上げに影響を与え、寸法の不正確さにつながります。窒化チタン (TiN) などの適切なコーティングが施された鋭利な工具を使用し、適切な潤滑剤を塗布することで、この問題を最小限に抑えることができます。
アルミニウム合金は熱伝導率が高く、熱を効率的に放散しますが、切断速度が速く、切断負荷が大きいため、熱が材料全体に素早く分散されないことがあります。このような場合、クーラントを使用し、切削速度と送り速度を最適化すると、熱膨張による悪影響を軽減できます。
機械加工中、アルミニウムの軽量な性質により、特に変形しやすい薄肉または長い部品の場合、位置決めが不安定になることがあります。したがって、CNC 加工では、精度を確保し、部品の歪みを防ぐために、適切な治具設計と安定したワーク保持方法が重要です。
カスタム CNC アルミニウム パーツをお探しですか?軽量、強度、信頼性、費用対効果の高いアルミニウムは、製造において最も汎用性の高い材料の 1 つとなっています。 Chiggo では、取り扱う材料の約 70% を占めるアルミニウムの加工に 10 年以上の経験があります。 今すぐお問い合わせください始めましょう!
産業用途では、金属の選択は、強度、硬度、密度などの機械的特性だけでなく、熱特性にも影響されます。考慮すべき最も重要な熱特性の1つは、金属の融点です。 たとえば、炉のコンポーネント、ジェットエンジン燃料ノズル、排気システムは、金属が溶けた場合に壊滅的に失敗する可能性があります。結果として、オリフィスの詰まりやエンジンの故障が発生する可能性があります。融点は、製錬、溶接、鋳造などの製造プロセスでも重要です。ここでは、金属が液体の形である必要があります。これには、溶融金属の極端な熱に耐えるように設計されたツールが必要です。金属は、融点以下の温度でクリープ誘発性の骨折に苦しむ可能性がありますが、デザイナーはしばしば合金を選択するときにベンチマークとして融点を使用します。 金属の融点は何ですか? 融点は、固体が大気圧下で液体に移行し始める最も低い温度です。この温度では、固形相と液相の両方が平衡状態で共存します。融点に達すると、金属が完全に溶けるまで追加の熱は温度を上げません。これは、相変化中に供給される熱が融合の潜熱を克服するために使用されるためです。 異なる金属には、融点が異なり、原子構造と結合強度によって決定されます。しっかりと詰め込まれた原子配置を備えた金属は、一般に融点が高くなります。たとえば、タングステンは、3422°Cで最高の1つです。金属結合の強度は、原子間の引力を克服し、金属を溶かすために必要なエネルギーの量に影響します。たとえば、プラチナや金などの金属は、結合力が弱いため、鉄やタングステンなどの遷移金属と比較して融点が比較的低いです。 金属の融点を変更する方法は? 金属の融点は、通常の条件では一般に安定しています。ただし、特定の要因は特定の状況下でそれを変更できます。 1つの一般的な方法はです合金 - 純粋な金属に他の要素を加えて、異なる融解範囲の新しい材料を形成します。たとえば、スズを銅と混合して青銅を生成すると、純粋な銅と比較して全体的な融点が低下します。 不純物また、顕著な効果を持つこともできます。微量の外部要素でさえ、物質に応じてより高くまたは低い融解温度を崩壊させ、融解温度をシフトする可能性があります。 物理的な形問題も同様です。ナノ粒子、薄膜、または粉末の形の金属は、表面積が高く原子挙動の変化により、バルクの対応物よりも低い温度で溶けます。 ついに、極度の圧力原子がどのように相互作用するかを変えることができ、通常、原子構造を圧縮することで融点を上げます。これは日常のアプリケーションではめったに懸念事項ではありませんが、航空宇宙、深海掘削、高圧物理学研究などの高ストレス環境の材料選択と安全性評価における重要な考慮事項になります。 金属および合金の融点チャート 一般的な金属と合金の融点 金属/合金融点(°C)融点(°F)アルミニウム6601220真鍮(Cu-Zn合金)〜930(構成依存)〜1710ブロンズ(Cu-SN合金)〜913〜1675炭素鋼1425–15402600–2800鋳鉄〜1204〜2200銅10841983年金10641947年鉄15382800鉛328622ニッケル14532647銀9611762ステンレス鋼1375–1530(グレード依存)2500–2785錫232450チタン16703038タングステン〜3400〜6150亜鉛420787 金属融点の完全なリスト(高さから低い) 金属/合金融点(°C)融点(°F)タングステン(w)34006150Rhenium(re)31865767オスミウム(OS)30255477タンタル(TA)29805400モリブデン(MO)26204750ニオビウム(NB)24704473イリジウム(IR)24464435ルテニウム(ru)23344233クロム(CR)1860年3380バナジウム(V)1910年3470ロジウム(RH)1965年3569チタン(TI)16703040コバルト(co)14952723ニッケル(NI)14532647パラジウム(PD)15552831プラチナ(PT)17703220トリウム(TH)17503180ハステロイ(合金)1320–13502410–2460インコルエル(合金)1390–14252540–2600インコロイ(合金)1390–14252540–2600炭素鋼1371–15402500–2800錬鉄1482–15932700–2900ステンレス鋼〜1510〜2750モネル(合金)1300–13502370–2460ベリリウム(be)12852345マンガン(MN)12442271ウラン(u)11322070カプロニッケル1170–12402138–2264延性鉄〜1149〜2100鋳鉄1127–12042060–2200ゴールド(au)10641945年銅(cu)10841983年シルバー(AG)9611761赤い真鍮990–10251810–1880ブロンズ〜913〜1675黄色の真鍮905–9321660–1710海軍本部の真鍮900–9401650–1720コインシルバー8791614スターリングシルバー8931640マンガンブロンズ865–8901590–1630ベリリウム銅865–9551587–1750アルミブロンズ600–6551190–1215アルミニウム(純粋)6601220マグネシウム(mg)6501200プルトニウム(PU)〜640〜1184アンチモン(SB)6301166マグネシウム合金349–649660–1200亜鉛(ZN)420787カドミウム(CD)321610ビスマス(bi)272521バビット(合金)〜249〜480スズ(sn)232450はんだ(PB-SN合金)〜215〜419セレン(SE)*217423インジウム(in)157315ナトリウム(NA)98208カリウム(K)63145ガリウム(GA)〜30〜86セシウム(CS)〜28〜83水銀(HG)-39-38 重要なテイクアウト: タングステン、レニウム、タンタルなどの高融点金属は、極端な熱アプリケーションに不可欠です。これらの金属は、過酷な炉と航空宇宙環境に構造的完全性を保持しています。モリブデンも融解に抵抗し、高温炉の建設に非常に価値があります。 鉄、銅、鋼などの中溶融点金属は、管理可能な融解温度と良好な機械的または電気的特性を組み合わせて、建設、工具、電気システムに汎用性があります。 ガリウム、セシウム、水銀、ブリキ、鉛などの低融点金属は、はんだ、温度計、低融合合金などの特殊な用途にとって価値があります。
STEP ファイルは、エンジニアリングおよび設計における 3D モデルの共通言語です。異なるソフトウェア プログラム間で複雑な CAD モデルを共有する必要がある場合は、おそらく STEP ファイルに出会ったことがあるでしょう。 この記事では、STEP ファイルの定義、形式の歴史、利点と欠点、他の形式との比較、一般的な使用例、およびこれらのファイルを開いたり変換したりするために利用できるソフトウェアについて説明します。
現代の製造業では、CNC 加工はその精度と効率性の点で高く評価されています。製品の CNC 加工を検討している場合、避けられない疑問の 1 つは、コストはどれくらいで、予算内に収まるのかということです。コストは最終価格に大きな影響を与える可能性のあるいくつかの要因に依存するため、CNC 加工には一律の価格はありません。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español