当工程师谈论“压力”时,它们的意思与考试焦虑或工作压力截然不同。在这里,压力是材料中每单位区域的内力。伸展橡皮筋或在拔河船上拉绳子,您会看到拉伸压力在作用中,这种压力使材料在负载下伸长。
在本文中,我们解释了什么是拉伸应力,它与压力应力和拉伸强度,关键公式以及chiggo如何将这些考虑因素纳入现实世界制造业的方式有何不同。
拉伸压力描述了当您尝试将其拉开时材料的反应。它导致材料沿施加载荷的轴伸长。正式地,它被定义为施加的力除以垂直于该力的横截面区域。
拉伸应力与压缩应力相反。当力起作用伸展或延长物体时,会发生拉伸应力,而当力挤压或缩短后,会发生压力。想象一下坚固的金属条:两端拉动,并且会遇到拉伸压力,略微拉长。将两端推动,好像试图沿其长度粉碎它,并且棒会遇到压力,缩短或凸起。
这些应力也可以同时在结构的不同部分发生。例如,当人或机器在混凝土地板板上移动时,平板的顶部表面被推入压缩,而底部表面则以张力拉伸。如果底部的拉伸应力太高,则可能会出现裂缝 - 这就是为什么工程师将钢筋放在那里抵抗张力的原因。
拉伸应力材料在给定时刻所经历的负载是每单位面积的力。它会根据施加力而升高和下降。抗拉强度相比之下,是固定材料的特性,它是材料在产生或断裂之前可以应付的最大拉伸压力。
实际上,工程师不断比较两者。如果零件中的实际拉伸应力保持在其拉伸强度以下,则该零件将略微伸展但保持完整。如果压力超过强度,则会发生故障。这就是为什么设计始终包括安全余量,确保现实压力远低于所选材料的已知强度的原因。
拉伸时,拉伸应力在其拉伸时测量内力。它以一个简单的公式计算:
σ= f / a
在哪里:
这个方程告诉我们拉力的集中力量。较高的负载或较小的横截面会产生较高的应力。例如,悬浮在细线上的相同重量会产生比厚电缆上的压力要大得多。这就是为什么工程师大小的电缆,杆或横梁以保持压力远低于所使用材料的安全限制的原因。
但是,尽管这种公式给了我们压力的数值,但并未揭示材料本身将如何响应。它会突然突然折断,永久弯曲还是弹簧回到原始形状?为了回答这一点,工程师依靠压力 - 应变曲线。
为了创建应力 - 应变曲线,将测试标本(通常是Dogbone形)放置在拉伸测试机中。机器握住各端,并逐渐将它们拉开,将样品拉伸至破裂。在此过程中,连续测量施加的应力和所得应力(相对于原始长度的长度变化)。
将结果用X轴的应变绘制,并在Y轴上的应力。在此曲线上,可以识别几个关键点:
弹性区域
起初,压力和应变是成比例的。这是弹性区域,其中胡克定律适用(σ=e猛)。该线性部分的斜率是弹性模量(Young的模量),一种刚度的度量。在该区域中,一旦卸下负载,材料将返回其原始形状。
产量点
随着加载的增加,曲线从直线偏离。这是产量点,弹性行为结束,塑性(永久)变形开始。除此之外,即使卸下负载,材料也不会完全恢复其原始形状。
终极拉伸强度(UTS)
曲线持续向上进入塑料区域,达到峰值。这个最高点是最终的拉伸强度(UTS),它代表材料在颈部(局部变薄)开始之前承受的最大压力。
断裂点
在UTS之后,曲线随着样品颈的倾斜而向下倾斜,无法再承担那么多的负载。最终,材料在断裂点断裂。对于延性材料,由于颈部,骨折的应力通常低于UTS。对于脆性材料,裂缝可能会突然发生在弹性极限附近,而塑性变形很小。
在材料被拉,悬挂或拉伸的任何情况下,拉伸压力决定了它是否可以安全地承担负载或是否会失败。以下是一些关键应用程序和示例:
想想悬挂桥,例如金门桥 - 悬挂在塔之间的巨大钢电缆处于恒定的拉伸压力下,支撑道路和车辆的重量。工程师为这些电缆选择高强度的钢,以便他们可以处理重负荷以及诸如风或地震等额外的力量而不会失败。现代建筑也巧妙地使用了紧张。例如,在预应力的混凝土中,钢质肌腱被嵌入并拉伸,以便梁可以安全地处理载荷。
许多日常系统还直接依赖拉伸压力。以电梯为例:其钢电缆处于恒定的张力,不仅承载汽车的重量,而且还带有加速或停止时的额外力。起重机以相同的原理运行,使用高应答电缆安全地抬起和移动重载。即使在像吉他这样简单的东西中,拉伸压力也会发挥作用 - 越紧手起来钉子,琴弦的张力越大,这会使音高提高,直到推到太远的话,琴弦最终会破裂。
在机械工程中,拉伸应力同样重要。通过稍微拉伸飞机或汽车发动机工作中的螺栓和螺钉 - 由此产生的拉伸应力会产生将零件固定在一起的夹紧力。如果螺栓的压力过高(拧紧时扭矩过多或使用过多的负载),它可能会产生和失败,可能导致机器分开。这就是为什么螺栓通过表明其产量和拉伸强度的等级进行评分的原因,以及为什么将临界螺栓拧紧到指定的紧张局势的原因。
知道拉伸压力的理论是一回事,但是设计在现实负载下执行的部分是另一回事。在Chiggo,我们弥合了那个差距。
我们的团队在CNC加工,注入成型,钣金和3D打印方面为您提供支持,并在每个阶段集成了强度考虑。无论您是开发原型还是生产规模,我们都可以帮助您选择正确的材料和处理,以便您的零件满足性能要求并避免昂贵的故障。
防止失败的第一个保障是选择正确的材料。在Chiggo,每种列出的合金和聚合物都具有经过验证的机械性能,包括拉伸和屈服强度,并由供应商数据支持,并在需要时进行测试认证。
这意味着工程师不仅可以按成本或终点进行比较,而且可以在负载下进行可靠的强度进行比较。例如,在决定铝6061-T6和7075-T6之间时,拉伸强度将成为关键的滤波器,尤其是对于支架,外壳或其他承载组件。
在CNC加工,材料保留其各向同性强度,因此性能通常是可以预见的。真正的风险来自设计细节。尖锐的角落,薄壁或突然的几何变化都可以充当应力集中器。
我们的工程师尽早确定这些问题,并建议实用的解决方案 - 添加圆角,调节壁厚或改用更坚固的合金。这些改进有助于确保完成的零件保持其完整的拉伸能力。
3D打印零件的行为不同,因为它们的强度取决于印刷方向。例如,在FDM中,沿Z轴键合弱。这意味着如果垂直施加负载,则零件可能更容易失败。
物质选择和过程设置也起着重要作用。 PLA和ABS等标准塑料对原型很友善,而工程级尼龙或碳纤维增强的聚合物对功能零件的阻力更高。填充,层厚度和建立方向进一步影响零件在负载下的性能。
对于金属,在添加剂制造过程中快速加热和冷却会产生残余应力,可以使零件扭曲或破裂。我们的工程师早日提高了弱方向和应力敏感的特征。我们可能建议重新定位零件,增加填充填充物或选择更强的材料。在需要的情况下,诸如退火之类的后建造治疗有助于缓解压力并提高稳定性。
在注射成型中,拉伸强度不仅取决于聚合物本身,还取决于它在模具中的流动方式。在填充过程中,分子链通常沿流路径对齐,使该零件在一个方向上更强,但在另一个方向较弱。不均匀的冷却会捕获内部应力,从而导致负载下的弯曲,下沉痕迹或裂缝。
设计细节也很重要。薄壁,门位置不佳或焊缝线都可以变成应力点。通过审查流动路径,壁厚和设计早期的冷却平衡,我们的团队有助于降低这些风险,并使模制零件保持强劲而稳定。
在铸造中,在冷却和凝固过程中通常会出现拉伸问题。随着部分以不同的速度冷却,内部压力会增加,导致热泪,收缩裂缝或失真。
霉菌设计扮演着重要角色。厚到薄的过渡,锋利的角落或放置不善的立管都可以集中压力并减弱性能。选择具有稳定固化行为并控制冷却速率的合金有助于降低这些风险。
在Chiggo, our engineers review designs before tooling begins to spot high-risk features early. We may recommend smoother transitions, adjusted wall thicknesses, or changes to gating and riser systems to balance solidification. Where needed, we also suggest post-casting treatments such as annealing to relieve built-in stresses.
通过机械加工的制造过程,可以将材料成型为所需的产品。然而,加工材料并不总是一件容易的事,因为材料的特性和具体的加工条件在决定整个过程的平稳性和效率方面起着至关重要的作用。所有这些考虑都与一个关键词“机械加工性”有关。
精密加工是一个关键的制造过程,可通过使用最先进的CNC机器产生具有极高尺寸公差和优越表面饰面的组件。这些零件不仅是为了形状而设计的,而且还用于可靠的功能,精确的拟合和可重复性。
延展性是材料科学中的一个基本概念,它解释了为什么某些材料(例如金属)会在压力下显着弯曲或伸展,而另一些材料突然突然会弯曲。在本文中,我们将解释什么是延展性,如何测量,为什么重要以及哪些因素影响它。 延展性的定义 延展性是材料在断裂前张力造成塑性变形的能力。简而言之,可以将延性材料拉长很长的路,而无需捕捉 - 考虑将铜拉入电线中。相比之下,像玻璃这样的脆性材料几乎没有变形后倾向于破裂或破碎。在材料科学中,塑性变形是形状的永久变化。这与弹性变形不同,弹性变形是可以恢复的。延展性与可塑性密切相关,但更具体:可塑性是在任何模式(张力,压缩或剪切)下永久变形的一般能力,而延展性则是指张力的能力。 从原子的角度来看,许多金属的高延展性来自非方向金属粘结以及允许脱位移动的滑移系统的可用性。施加压力后,脱位滑行使金属晶体可容纳塑性应变,因此金属通常弯曲或拉伸而不是断裂。相比之下,陶瓷和玻璃具有定向离子或共价键,并且滑动非常有限,因此在张力下,它们在明显的塑料流动之前倾向于破裂。但是,并非所有金属在室温下都是延性的(例如,某些BCC金属,高碳钢和金属玻璃杯可能相对脆),并且加热玻璃弯曲的玻璃弯曲主要是由于其玻璃转换温度以上的粘性流量,而不是金属式耐耐耐高压。 测量延展性 拉伸测试是量化延展性的最常见方法:标本以单轴张力加载到骨折中,延展性据报道是休息时伸长率的百分比和降低面积的百分比。 休息时伸长百分比(a%) 骨折时量规长度的百分比增加:a%=(lf -l0)/l0×100%,其中l0是原始量规长度,而LF是断裂时的最终长度。较高的A%表示拉伸延展性更大。 减少面积百分比(RA%) 裂缝位置的横截面的百分比降低:RA%=(A0 - AF)/A0×100%,其中A0是原始面积,AF是休息时的最小面积。大的RA%反映出明显的颈部和强烈的颈后延展性。 (对量规长度不太敏感;对于非常薄的纸张而言并不理想。) 这两种措施通常是拉伸测试的一部分。例如,可以描述钢样品的伸长率20%,而在休息时降低了60%的面积 - 表明延性行为。相比之下,脆性陶瓷可能仅显示1%的伸长率,而本质上可能显示出0%的面积减少(几乎没有变薄)。伸长率和降低越大,材料的延展性就越大。 可视化延展性的另一种方法是在应力 - 应变曲线上,这是从拉伸测试获得的图。绘制应力(相对变形)的应力(每单位面积)。此曲线上的要点包括: 杨的模量(E):线性弹性区域的斜率;刚度的度量。 屈服强度(σᵧ):塑性变形的发作(通常由0.2%偏移方法定义时,当不存在尖锐的屈服点)。 最终的拉伸力量(UTS):最大工程压力。超越标本的脖子;断裂发生后期,通常处于较低的工程压力下。 断裂点:标本最终破裂的地方。 延性材料(蓝色)与脆性材料(红色)的代表性应力应变曲线 延性材料的曲线在屈服后显示长塑料区域,表明它可以在骨折前保持较大的应变。相比之下,脆性材料的曲线在屈服点附近结束,几乎没有塑料区域。总而言之,在工程应力 - 应变图(对于规定的规格长度)上,延展性反映了裂缝的总应变 - 延性材料的长时间,脆性材料的较短。但是,明显的断裂应变取决于所选的量规长,一旦颈部开始定位,颈部开始定位,因此工程曲线不是颈后延展的直接衡量。因此,规格通常在休息时报告百分比伸长率(a%)以及降低面积百分比(RA%)。 延展性和延展性有什么区别? 延展性是一种材料在不破裂而伸展张力的能力。我们以拉伸测试的伸长百分比或减少面积来量化它。如果可以将金属吸入电线,则是延展性的。锻造性是一种材料在压缩方面变形的能力(不开裂,可以锤击,滚动或压入纸板);我们通过弯曲/扁平/拔罐测试或减小厚度可以耐受多少判断。 实际上:黄金,铜和铝都是高度延展且可延展的(非常适合电线和纸板)。铅非常具有延展性,但仅适中延展性(易于滚动成薄片,较差,作为细丝)。镁在室温下的延展性有限,而锌在变暖时会更具延展性。为了制造制造,选择延性合金用于绘画,深度拉伸和下拉的功能;选择可延展的合金滚动,冲压和锻造,在压缩占主导地位的地方。温度和晶体结构移动两个特性。快速规则:延展性=张力/电线;锻造性=压缩/表。 为什么延展性很重要 延展性是制造性和服务安全性安全背后的安静主力。在工厂中,它允许将金属卷成纸板,将其拉入电线并锻造而不会破裂。在现场,它使组件能够吸收能量,重新分配应力并在失败前提供警告。 制造的延性材料 高延展性通常意味着一种材料是可行的:它可以锻造,滚动,绘制或挤出成各种形状而不会破裂。低延展性(脆性)意味着该材料很难变形,并且更适合于铸造或加工等过程(在材料不强迫塑料形状过多地改变形状)之类的过程中。 锻造和滚动:这些过程通过锤击(锻造)或在掷骰(滚动)之间将固体金属变形为形状。延性金属耐受涉及的大塑料菌株。实际上,钢板/开花被热卷成薄板,板和结构形状,例如I光束,铝很容易被伪造成组件 - 金属在压缩载荷下流动。相比之下,像铸铁这样的脆性合金倾向于在沉重的变形下破裂,因此通常通过铸造到近网状形式来形状。 挤出和电线/栏绘图:挤出将金属推动通过模具制作长而恒定的截面产品。电线/条形图将固体库存通过模具降低直径。两者都依靠塑料流。可以将延性合金(例如铝,铜和低碳钢)挤出到试管和轮廓(例如窗框,热水链截面)中,并将其抽入细线。在加工温度下没有足够的延展性的材料倾向于检查或裂缝,这就是为什么玻璃或陶瓷不会以固态挤出/绘制的原因;他们的纤维是融化的。 深图:深色绘图形成轴对称的杯子和罐,并用拳头迫使薄板进入模具;法兰向内进食,而墙壁略微稀薄。足够的延性可防止分裂和皱纹。铝饮料罐头是经典的例子。 薄板金属弯曲和冲压:车身面板和外壳的一般弯曲和冲压需要延展性,以避免边缘裂纹和橙色 - 薄荷伸展时。钢制和铝等级是针对形成性量身定制的,因此可以将复杂的形状(例如,汽车引擎盖)盖章而不会故障。 金属3D打印(AM):延展性仍然很重要。当然的零件(尤其是来自激光粉床融合(LPBF))可以显示出由于细,质感的微观结构,残留应力和孔隙率而显示出降低的延展性。压力缓解和热等静止压力(髋关节),然后经常进行轻热处理,恢复延展性并降低开裂风险;然后,TI-6AL-4V和ALSI10MG等合金可以提供有用的服务延展性。 现实世界应用的延性材料 延展性不仅是实验室指标,还直接影响现实世界结构,车辆和设备的性能。这就是为什么它在工程和设计中重要的原因: 防止突然失败并提高安全性:延性材料逐渐失效:它们在断裂前产生和吸收能量,提供可见的警告并允许负载重新分配。在建筑物中,这就是为什么结构钢受到青睐的原因 - 超负荷的梁会弯曲而不是捕捉。钢筋混凝土遵循相同的逻辑:嵌入式钢钢筋增加延展性,因此成员可以在地震需求下弯曲而不是分开。 影响(地震和碰撞应用)中的能量吸收:在动态载荷下,延展性将影响能量变成塑料工作。钢框通过屈服来消散地震力,并以钢或铝折叠的汽车碎区域的控制方式以受控的方式降低机舱减速。现代人体结构平衡强度与延展性(例如DP/Trip Steels),并且航空航天Al/Ti合金保留足够的延展性,以造鸟,加压和冷soak耐受性。 […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español