金属强度是决定金属是否适合给定应用的最重要的机械性能之一。它表示金属抵抗外部载荷或外力而不变形或断裂的能力。高强度金属在建筑、机械和航空航天领域具有无价的价值,它们可以支撑结构并承受极端条件。
在本指南中,我们将区分强度的类型,讨论影响金属强度的因素以及如何操纵它们来提高金属的性能。另外,我们将提供金属强度表,帮助您更直观地选择您想要的金属材料。
根据负载的施加方式,材料表现出不同类型的强度。以下是杆的负载条件的基本类型:

接下来,我们将详细讨论几种最常见的力量类型。
拉伸强度是指材料在断裂前能够承受的最大拉伸(拉动或拉伸)应力。它测量材料在失效之前可以承受的负载量。

该应力-应变曲线描绘了典型的拉伸性能。 A、B、C 点代表抗拉强度的三个关键节点,作为参考点,表明产品在拉力作用下性能发生显着变化。我们来一一检查这三点。
屈服强度(A点):表示材料在发生永久塑性变形之前可以承受的最大应力。超过这一点,当应力消除时,材料将不会恢复到其原始形状。
制造商使用屈服点来设定安全操作限制,以保持材料的结构完整性和功能性。它也被用作许多工程规范中定义故障的标准。
极限强度(B点):一般讨论拉伸强度时,通常指极限拉伸强度(UTS)。它代表材料在开始颈缩之前可以承受的最大载荷。此后,横截面积减小,导致材料能够承受的应力减小,直至断裂。
您可以使用拉伸试验机(也称为万能试验机或 UTM)评估金属的拉伸强度。它有两个夹具,可在两端固定样品。在测试过程中,机器对工件施加受控的拉力,直到其断裂。在整个测试过程中测量施加的拉力(或应力)和伸长率,以确定金属的屈服强度和极限拉伸强度。

断裂强度(C点):材料最终失效并断裂的应力。它用于设计能够承受极端条件的组件,通过防止灾难性故障来确保安全。
这种类型的强度衡量材料抵抗压缩或缩短材料的力的能力。它是材料在不失效的情况下可以承受的最大压缩载荷。
您可以使用压缩试验机评估抗压强度。它通常使用板从两端向工件施加压力,施加受控的压缩力,直到金属变形或断裂。开始发生变形的点表示该金属的抗压强度。

冲击强度衡量材料在遭受突然、快速的冲击或冲击时抵抗断裂或变形的能力。它代表材料吸收和承受物体撞击动能的能力。
通常使用冲击试验机(例如夏比试验机或悬臂梁试验机)进行测量。这些机器用摆锤敲击有缺口的样品,并记录样品在断裂过程中吸收的能量。

了解金属强度是了解材料性能的一个重要方面。这使我们能够就为各种应用选择正确的材料做出明智的决定。
金属的强度对于保证结构和部件的安全性和耐用性至关重要,特别是在机械、桥梁和建筑等关键应用中。获取这方面的知识有助于防止可能导致事故、伤害或死亡的故障,并确保延长产品的使用寿命,最终减少维修和更换的频率。
了解金属强度可以优化各种应用中的性能。例如,在汽车和航空航天工业中,使用具有适当强度的金属可以提高燃油效率、减轻重量并提高整体性能。
通过了解不同金属的强度,制造商可以做出具有成本效益的决策。为正确的应用选择正确的金属可以最大限度地减少材料浪费、降低生产成本并延长产品的使用寿命,从而实现长期节约。
了解金属强度为创新设计和工程解决方案开辟了可能性。它能够创造更轻、更强、更高效的结构和产品,突破了技术可能性的界限。

接下来,我们将介绍一些由于强度高而在实际中广泛使用的金属。
钛是一种天然金属,以其高强度重量比而闻名。除了其轻质特性和卓越的拉伸强度之外,钛还具有很强的耐腐蚀性,使其成为航空航天、医疗植入物和高性能汽车零部件的绝佳选择。
它通常以合金形式使用,以进一步增强其性能。一个常见的例子是钛合金Ti-6Al-4V,它含有铝和钒,广泛应用于航空航天工业。
在天然存在的金属中,钨被认为是最强的,因为其抗拉强度最高,高达 1,725 MPa。加上其最高的熔点,钨在需要极高耐用性和耐热性的应用中具有极其重要的价值。然而,它通常很脆。为了补偿这种特性,钨通常与碳等其他元素形成合金。碳化钨因其卓越的硬度和耐用性而广泛应用于切削工具、采矿设备和耐磨表面。
铬的莫氏硬度为 8.5,被认为是地球上最硬的金属之一,并被列入最强金属之列。然而,由于铬的脆性,其纯净形式并不常用。它通常用于镀铬,为金属和塑料提供坚硬、耐腐蚀的表面。此外,铬还用于高性能合金,以提高强度、耐磨性和耐腐蚀性。不锈钢是此类合金的典型例子,它是各个行业中使用最广泛的材料之一。
钢是由铁与碳和其他一些元素合金化而成的,是最重要的工程和建筑材料。钢的强度取决于其合金成分。以下是一些常见的最强钢类型:
不锈钢是铁、铬和锰的合金。它以其优异的耐腐蚀性而闻名,屈服强度约为 1560 MPa,极限拉伸强度高达 1600 MPa。由于其耐用且防锈,因此非常适合厨房用具、医疗器械和建筑材料。
高强度低合金钢(HSLA)是另一种类型。它是铁与少量铜、镍、钒、钛和铌的合金。由于采用了微合金化和热处理技术,HSLA 重量轻,但非常坚固耐用。它广泛应用于汽车制造、结构施工、桥梁建设和管道等对高强度和低重量至关重要的领域。
马氏体时效钢是铁与镍、钴、钼和钛的合金,碳含量非常低。这种钢以其通过时效热处理实现的超高强度和韧性而闻名。它用于高性能应用,如航空航天、模具、飞机起落架、火箭发动机外壳和高性能齿轮。
工具钢由钨、钼、铬和钒等元素制成。它非常坚硬且耐磨,并且可以在高温下保持锋利的边缘。工具钢对于制造切削工具、模具和模具至关重要,特别是在需要高耐磨性和韧性的情况下。
铬镍铁合金是镍铬基高温合金系列,即使在高温下也以其高强度和出色的抗氧化和耐腐蚀性而闻名。铬镍铁合金在航空航天、船舶和化学加工行业特别有用,这些行业的材料必须承受严重的机械和热应力而不降解。

了解金属制造中常用的最强金属后,我们可以认识到合金化(特别是添加新元素)是增强强度的关键方法。除了合金化之外,还经常采用其他实用方法来进一步提高金属的强度,以满足现代应用不断增长的需求。
虽然这在技术上是合金化的一种形式,但它的重点是如何将添加的元素整合到金属的晶体结构中以增强其强度。该过程涉及将合金元素的原子添加到基础金属的晶格中以形成固溶体。掺入的原子会产生晶格扭曲,阻碍位错运动,从而提高金属的强度。
热处理是一种受控过程,用于通过改变金属的结构来提高金属的性能。以下是一些常见的增强金属强度的热处理方法:
淬火是将金属加热到高温,然后在水、油或空气等介质中快速冷却。这种快速冷却将碳原子捕获在晶体结构内,形成硬质马氏体相。硬度的增加通常伴随着拉伸强度的增加。但这种极端冷却也会引入内应力和脆性。
通常在淬火后进行回火,以减轻这些应力并恢复淬火期间损失的一些延展性。虽然它会稍微降低硬度,但会提高韧性并形成更稳定的微观结构,从而增强金属承受冲击和应力的能力。
正火是将金属加热到其临界温度以上,然后进行空气冷却。该过程产生更均匀、更细晶的结构,从而增强金属的强度。
它涉及将金属加热到适中的温度并长时间保持该温度,以便在金属的晶体结构内形成细小的沉淀物。这些沉淀物通过阻止位错运动来提高材料的屈服强度和硬度。
冷加工,也称为应变硬化,涉及在室温下通过轧制、拉拔或挤压等工艺使金属发生塑性变形。这种变形增加了晶体结构内位错的密度,阻碍了它们的运动,从而强化了材料。
金属强度表为选择适合特定应用的材料提供了可靠的标准。它提供了金属在各种负载条件下的性能的综合评估。您可以使用它快速比较不同金属的特性。
| 金属类型 | 抗拉强度 (PSI) | 屈服强度 (PSI) | 洛氏硬度 (B 级) | 密度 (公斤/立方米) |
| 不锈钢304 | 90,000 | 40,000 | 88 | 8000 |
| 铝6061-T6 | 45,000 | 40,000 | 60 | 2720 |
| 铝 5052-H32 | 33,000 | 28,000 | - | 2680 |
| 铝3003 | 22,000 | 21,000 | 20 至 25 | 2730 |
| 钢A36 | 58-80,000 | 36,000 | - | 7800 |
| 钢级 50 | 65,000 | 50,000 | - | 7800 |
| 黄黄铜 | - | 40,000 | 55 | 8470 |
| 红黄铜 | - | 49,000 | 65 | 8746 |
| 铜 | - | 28,000 | 10 | 8940 |
| 磷青铜 | - | 55,000 | 78 | 8900 |
| 铝青铜 | - | 27,000 | 77 | 7700-8700 |
| 钛 | 63,000 | 37,000 | 80 | 4500 |
还在为您的项目选择理想的金属而烦恼吗?不用担心。 Chiggo是您值得信赖的合作伙伴!我们随时准备指导您完成金属选择和加工的复杂过程。凭借十多年的行业经验,我们拥有解决具有挑战性的材料要求的洞察力和专业知识。

最后,让我们通过下面所示的应力应变曲线快速了解一些重要但容易混淆的材料特性。
当工程师谈论“压力”时,它们的意思与考试焦虑或工作压力截然不同。在这里,压力是材料中每单位区域的内力。伸展橡皮筋或在拔河船上拉绳子,您会看到拉伸压力在作用中,这种压力使材料在负载下伸长。 在本文中,我们解释了什么是拉伸应力,它与压力应力和拉伸强度,关键公式以及chiggo如何将这些考虑因素纳入现实世界制造业的方式有何不同。 什么是拉伸压力? 拉伸压力描述了当您尝试将其拉开时材料的反应。它导致材料沿施加载荷的轴伸长。正式地,它被定义为施加的力除以垂直于该力的横截面区域。 拉伸应力与压力应力 拉伸应力与压缩应力相反。当力起作用伸展或延长物体时,会发生拉伸应力,而当力挤压或缩短后,会发生压力。想象一下坚固的金属条:两端拉动,并且会遇到拉伸压力,略微拉长。将两端推动,好像试图沿其长度粉碎它,并且棒会遇到压力,缩短或凸起。 这些应力也可以同时在结构的不同部分发生。例如,当人或机器在混凝土地板板上移动时,平板的顶部表面被推入压缩,而底部表面则以张力拉伸。如果底部的拉伸应力太高,则可能会出现裂缝 - 这就是为什么工程师将钢筋放在那里抵抗张力的原因。 拉伸应力与拉伸强度 拉伸应力材料在给定时刻所经历的负载是每单位面积的力。它会根据施加力而升高和下降。抗拉强度相比之下,是固定材料的特性,它是材料在产生或断裂之前可以应付的最大拉伸压力。 实际上,工程师不断比较两者。如果零件中的实际拉伸应力保持在其拉伸强度以下,则该零件将略微伸展但保持完整。如果压力超过强度,则会发生故障。这就是为什么设计始终包括安全余量,确保现实压力远低于所选材料的已知强度的原因。 拉伸应力公式 拉伸时,拉伸应力在其拉伸时测量内力。它以一个简单的公式计算: σ= f / a 在哪里: σ=拉伸应力(在Pascals,MPA或PSI中) F =施加力(纽顿或磅) a =横截面区域(以mm²或英寸为单位) 这个方程告诉我们拉力的集中力量。较高的负载或较小的横截面会产生较高的应力。例如,悬浮在细线上的相同重量会产生比厚电缆上的压力要大得多。这就是为什么工程师大小的电缆,杆或横梁以保持压力远低于所使用材料的安全限制的原因。 但是,尽管这种公式给了我们压力的数值,但并未揭示材料本身将如何响应。它会突然突然折断,永久弯曲还是弹簧回到原始形状?为了回答这一点,工程师依靠压力 - 应变曲线。 了解应力应变曲线 为了创建应力 - 应变曲线,将测试标本(通常是Dogbone形)放置在拉伸测试机中。机器握住各端,并逐渐将它们拉开,将样品拉伸至破裂。在此过程中,连续测量施加的应力和所得应力(相对于原始长度的长度变化)。 将结果用X轴的应变绘制,并在Y轴上的应力。在此曲线上,可以识别几个关键点: 弹性区域 起初,压力和应变是成比例的。这是弹性区域,其中胡克定律适用(σ=e猛)。该线性部分的斜率是弹性模量(Young的模量),一种刚度的度量。在该区域中,一旦卸下负载,材料将返回其原始形状。 产量点 随着加载的增加,曲线从直线偏离。这是产量点,弹性行为结束,塑性(永久)变形开始。除此之外,即使卸下负载,材料也不会完全恢复其原始形状。 终极拉伸强度(UTS) 曲线持续向上进入塑料区域,达到峰值。这个最高点是最终的拉伸强度(UTS),它代表材料在颈部(局部变薄)开始之前承受的最大压力。 断裂点 在UTS之后,曲线随着样品颈的倾斜而向下倾斜,无法再承担那么多的负载。最终,材料在断裂点断裂。对于延性材料,由于颈部,骨折的应力通常低于UTS。对于脆性材料,裂缝可能会突然发生在弹性极限附近,而塑性变形很小。 拉伸压力的实际应用 在材料被拉,悬挂或拉伸的任何情况下,拉伸压力决定了它是否可以安全地承担负载或是否会失败。以下是一些关键应用程序和示例: 桥梁和建筑 想想悬挂桥,例如金门桥 - 悬挂在塔之间的巨大钢电缆处于恒定的拉伸压力下,支撑道路和车辆的重量。工程师为这些电缆选择高强度的钢,以便他们可以处理重负荷以及诸如风或地震等额外的力量而不会失败。现代建筑也巧妙地使用了紧张。例如,在预应力的混凝土中,钢质肌腱被嵌入并拉伸,以便梁可以安全地处理载荷。 电缆,绳索和链条 许多日常系统还直接依赖拉伸压力。以电梯为例:其钢电缆处于恒定的张力,不仅承载汽车的重量,而且还带有加速或停止时的额外力。起重机以相同的原理运行,使用高应答电缆安全地抬起和移动重载。即使在像吉他这样简单的东西中,拉伸压力也会发挥作用 - 越紧手起来钉子,琴弦的张力越大,这会使音高提高,直到推到太远的话,琴弦最终会破裂。 机器和螺栓 在机械工程中,拉伸应力同样重要。通过稍微拉伸飞机或汽车发动机工作中的螺栓和螺钉 - 由此产生的拉伸应力会产生将零件固定在一起的夹紧力。如果螺栓的压力过高(拧紧时扭矩过多或使用过多的负载),它可能会产生和失败,可能导致机器分开。这就是为什么螺栓通过表明其产量和拉伸强度的等级进行评分的原因,以及为什么将临界螺栓拧紧到指定的紧张局势的原因。 […]
轴承是支撑和引导旋转或移动部件(例如轴)的机械部件。它减少了摩擦并允许更平稳的旋转,从而降低了能耗。轴承还将载荷从旋转元件传递到外壳或框架,并且该载荷可以是径向的、轴向的或两者的组合。此外,轴承将零件的运动限制在预定方向,确保稳定性和精度。
数控车削是应用最广泛的数控加工工艺之一,因其精度和多功能性而在制造业中备受推崇。它涉及一种固定切削刀具,用于从车床或车削中心上的旋转工件上去除材料。该工艺主要用于生产具有圆形或轴对称特征的零件。根据切割操作的类型,它可以创建圆柱形、圆锥形、螺纹、凹槽或孔部件,以及具有特定表面纹理的零件。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español