铜、黄铜和青铜通常被归类为有色金属,属于同一类红色金属。它们均具有耐腐蚀、高导电/导热性和可焊接性等特点,使其广泛应用于建筑、电子、艺术品、机械等行业。
虽然这些金属具有相似的特性,但每种金属都具有对于特定应用至关重要的独特特性。了解它们的差异对于选择最适合您的项目的非常重要。
本文展示了每种材料的独特特性,阐明了铜、黄铜和青铜之间的差异。我们将指导您找到更好的解决方案,为您的项目选择合适的材料。

铜,在元素周期表中标记为Cu,是一种天然存在的金属元素,具有独特的红橙色。它是自然界中发现的少数可以直接加工的金属之一,而且由于铜更纯净,它通常具有更高的价值,并且能够在不损失任何质量的情况下回收利用。
铜根据其纯度以及其他添加元素的类型和含量分为各种等级。以下是一些常见的铜牌号:
电解韧铜(ETP)铜(C11000):含铜量至少为99.90%,是最常见的铜牌号。它不仅具有最高水平的导热性和导电性,而且还具有出色的成型性和延展性。
无氧高导 (OFHC) 铜 (C10100):一种含氧量极低的高导铜。这一特性增强了其导电性并降低了氧化风险。
脱氧高磷(DHP)铜(C12200):机械性能与C11000相似,但含有少量磷。这种添加可以去除金属中的氧,增强其可焊性和钎焊能力,同时还可以防止氢脆。
碲铜(C14500):含有少量碲,通常在0.4%至0.7%之间。碲的添加增强了机械加工性,而不会显着影响电导率。

黄铜是一种主要由铜和锌以及微量其他金属组成的合金。锌和这些附加元素的比例显着影响黄铜的颜色(从更深的红铜到浅金)和机械性能。例如,增加锌含量通常会提高强度,但可能会降低延展性,使合金更硬、更脆。此外,由于含有锌,黄铜的成本通常比纯铜便宜。
黄铜有多种等级,主要根据铜与锌的比例以及其他合金元素的添加量进行分类。常见的有以下几种:
插装式黄铜 (C26000): 这种合金通常由 70% 的铜和 30% 的锌组成,擅长冷加工,具有良好的强度和延展性。它非常适合弹药外壳、散热器芯、热交换器以及连接器和端子等电气部件。
黄黄铜(C27200):锌含量比C26000高,具有亮黄色,成型性良好。它经常用于工业和建筑应用。
低铅黄铜 (C33000):这种合金具有低铅含量,易于加工,符合更严格的环境标准,非常适合饮用水系统等配件。
钟表黄铜(C35300):其优异的机械加工性能可实现精密加工,特别是在钟表制造中。
易切削黄铜 (C36000):以出色的延展性和机械加工性而闻名,广泛用于软焊、钎焊以及制造配件、紧固件和阀门。这是最常见的黄铜类型。
建筑青铜(C38500):因其出色的机械加工性和精美的外观而被选择,是建筑五金和装饰元素的理想选择。
海军黄铜 (C46400): 含有少量锡,具有卓越的耐海水腐蚀性能,非常适合海洋应用和暴露在恶劣环境中的部件。

青铜是一种金棕色合金,主要由铜和锡组成,还含有少量铝、锰、硅和磷等元素。它已经使用了数千年,可以追溯到公元前 3500 年的古代文明。
随着金属加工技术的进步和对改善材料性能的需求的增加,研究人员已经探索添加其他元素来增强青铜的性能。以下是青铜器的常见品种。
高铅锡青铜(C93200):常用于轴承(通常称为“轴承青铜”)、衬套、泵和阀门组件以及中等强度和良好耐磨性的机械应用。需要撕裂。
铝青铜(C95400):被称为最硬、最强的青铜类型,在盐水中具有很强的耐腐蚀性,适用于泵、阀门和船舶部件。它还用于重型应用,例如飞机起落架。
磷青铜(C51000):磷青铜以其优异的抗疲劳性、良好的耐腐蚀性和高强度而闻名,通常用于弹簧、紧固件、电气连接器和轴承等部件承受重复的压力和恶劣的环境。
硅青铜(C65500):具有高强度、优异的耐腐蚀性(特别是在海洋条件下)和良好的机械加工性。它广泛用于船舶硬件、建筑应用以及泵和阀门组件,这些领域的使用寿命和美观性至关重要。
为了区分它们的不同属性,我们先通过下表进行初步比较。
| 财产 | 青铜 | 黄铜 | 铜 |
| 元素组成 | 铜、锡、其他 | 铜、锌、其他 | 纯铜 |
| 颜色/外观 | 红棕色 | 黄金般的 | 橙红色 |
| 耐腐蚀 | 出色的 | 中间的 | 非常好 |
| 电导率 | 缓和 | 高的 | 非常高 |
| 导热系数 | 229~1440 BTU/小时-英尺²-°F | 64 BTU/小时-英尺²-°f。 | 223 BTU/小时-ft²-°f |
| 熔点 | 大约。 950 - 1050°C | 大约。 900-940℃ | 1085℃ |
| 密度 | 7.5~8.8g/c㎥ | 8.4~8.7g/c㎥ | 8.96g/c㎥ |
| 硬度 | 40~420 BHN | 55~73 伯明翰 | 35 BHN |
| 屈服强度 | 125-800兆帕 | 95至124兆帕 | 33.3兆帕 |
| 抗拉强度 | 350至635兆帕 | 338至469兆帕 | 210兆帕 |
| 机械加工性 | 从公平到良好 | 良好到优秀 | 公平的 |
| 焊接性 | 贫穷的 | 好的 | 出色的 |
接下来我们从元素成分、外观、耐蚀性、导电性、密度重量、硬度、强度、切削加工性、焊接性等方面进行具体比较。
铜是一种纯元素金属,化学符号为Cu,原子序数为29,在元素周期表中。
黄铜是一种铜锌合金,含有铜(60%~90%)和锌(10%~40%),偶尔还与锡、铅、铝或镍形成合金。
青铜主要由铜(80%~90%)和锡(10%~20%)组成,偶尔添加铝或锌等其他元素。
黄铜,顾名思义,具有类似黄金的外观。这使得很容易与其他两者区分开来。青铜和红铜具有相似的红棕色。相比之下,与青铜的暗金色相比,铜具有独特的红橙色。此外,青铜的表面经常呈现出微弱的环,这可以作为一个重要的区分特征。

青铜通常比铜和黄铜表现出更好的耐腐蚀性,特别是由于其锡含量,在盐水环境中。此外,通过加入铝和磷等附加元素可以增强其抵抗力。
铜虽然在海洋环境中的抵抗力稍差,但随着时间的推移会形成一层铜绿保护层,有助于防止进一步恶化。
黄铜虽然仍具有一定的抵抗力,但通常抵抗力较差,并且在暴露于特定化学品或盐水条件时可能会加速腐蚀。
铜、黄铜和青铜由于其不同的成分而表现出不同水平的导电性和导热性。
在电气方面,铜因其出色的导电性而成为最著名的金属之一,拥有 100% 的导电率。黄铜的电导率约为铜的 28%,而青铜则落后于铜,约为 15%。
从热学角度来看,青铜在三者中具有最高的导热率,铜位居第二,黄铜的导热率最低。
铜是一种纯元素,密度相对较高,为 8.96g/cm3,是三种金属中重量最高的。黄铜是铜和锌的合金,其密度随着锌比例的增加而降低。这是因为与铜相比,锌的密度较低(7.14 克/立方厘米)。青铜主要是铜和锡的合金,其密度根据锡或其他附加元素(例如铝、硅或磷)的用量而变化。锡的密度约为7.31克/立方厘米,低于铜的密度。
根据布氏硬度值,青铜>黄铜>铜。
纯铜是三种金属中最软的,而青铜是最硬的,但由于更脆而容易破裂。
强度是指材料在受到外力作用时抵抗变形和破坏的能力。硬度和强度(屈服强度和拉伸强度)之间存在很强的相关性。较硬的材料通常强度更高,但延展性可能较差。因此,就强度而言,青铜>黄铜>紫铜。
由于铜质较软,加工起来有点困难。一般来说,有效的加工需要正确的工具和技术。在加工过程中,它往往会产生长而粘的切屑,如果管理不当,有时会导致问题。
青铜具有良好的切削加工性。其适度的硬度和强度可降低变形风险,使其能够承受切割和其他加工操作。此外,大多数青铜合金的磨损率相对较低,有助于提高加工工具的耐用性。然而,一些青铜合金,如高硅青铜或其他特殊青铜合金,可能含有磨料颗粒,会加速加工过程中的刀具磨损。
与铜和青铜相比,黄铜具有高度可加工性。它产生更短、更易于管理的切屑,使其更易于加工。此外,黄铜有时含有铅,可提高机械加工性。
所有三种金属都是可焊接的。铜通常被认为适合焊接,但其高导热性需要更高的能量输入才能实现最佳焊接。然而,无氧铜和脱氧铜由于在焊接过程中不易氧化,因此具有优异的焊接性,使其在各种应用中备受青睐。
黄铜含有锌,其沸点比铜低。焊接过程中,锌的蒸发会导致焊缝出现气孔并释放出有害的氧化锌烟雾。通常采用 MIG、TIG,尤其是钎焊等技术来缓解这些挑战。
青铜在热影响区可能会出现脆性并产生孔隙。 TIG 焊接通常用于青铜,以减少这些问题。

为项目选择合适的材料时,重要的是要考虑每种金属的所有特性以及它们将如何影响您的项目。需要记住的一些关键点将帮助您选择更好的材料。
青铜因其优异的耐海水腐蚀性能而成为海洋应用的最佳选择。
黄铜因其类似黄金的外观而广泛应用于日常生活中,例如门把手和乐器。
铜卓越的导电性使其在电线和热交换器中不可或缺。此外,由于其抗菌特性,铜经常被用来制造食品烧瓶和食品加热器。
虽然铜、黄铜和青铜都是耐用金属,但它们具有不同程度的多功能性。
铜以其卓越的延展性而脱颖而出,为涉及金属成型和弯曲的制造工艺提供了出色的灵活性。
黄铜具有优异的机械加工性和良好的延展性,使其适用于需要复杂机械加工的装饰性和功能性部件。
青铜虽然具有良好的机械加工性,但缺乏铜和黄铜的延展性,使其不太适合需要变形的应用,但非常适合暴露在腐蚀环境中的耐磨零件和组件。
铜、黄铜、青铜的成本主要由成分和加工要求决定。就其成分和元素比例而言,铜是三种金属中最昂贵的。虽然这三种材料都含有铜,但由于混入了合金元素,黄铜和青铜的含量远低于纯铜。这降低了黄铜和青铜的成本。
铜、黄铜、青铜的成本主要由成分和加工要求决定。就其成分和元素比例而言,铜是三种金属中最昂贵的。虽然这三种材料都含有铜,但由于混入了合金元素,黄铜和青铜的含量远低于纯铜。这降低了黄铜和青铜的成本。

铜及其合金青铜、黄铜广泛应用于各个行业。如果您正在寻找可靠的合作伙伴来加工金属原型和零件,那么 Chiggo 就是您的最佳选择!我们提供全面的定制金属加工服务,例如 CNC 加工、钣金制造和压铸,专为生产高质量金属零件而量身定制。
凭借 10 多年为各行业制造金属零件的经验,我们提供具有竞争力的价格和较短的交货时间。请联系我们,了解有关为您的零件选择正确材料和制造工艺的更多信息。
延展性是材料科学中的一个基本概念,它解释了为什么某些材料(例如金属)会在压力下显着弯曲或伸展,而另一些材料突然突然会弯曲。在本文中,我们将解释什么是延展性,如何测量,为什么重要以及哪些因素影响它。 延展性的定义 延展性是材料在断裂前张力造成塑性变形的能力。简而言之,可以将延性材料拉长很长的路,而无需捕捉 - 考虑将铜拉入电线中。相比之下,像玻璃这样的脆性材料几乎没有变形后倾向于破裂或破碎。在材料科学中,塑性变形是形状的永久变化。这与弹性变形不同,弹性变形是可以恢复的。延展性与可塑性密切相关,但更具体:可塑性是在任何模式(张力,压缩或剪切)下永久变形的一般能力,而延展性则是指张力的能力。 从原子的角度来看,许多金属的高延展性来自非方向金属粘结以及允许脱位移动的滑移系统的可用性。施加压力后,脱位滑行使金属晶体可容纳塑性应变,因此金属通常弯曲或拉伸而不是断裂。相比之下,陶瓷和玻璃具有定向离子或共价键,并且滑动非常有限,因此在张力下,它们在明显的塑料流动之前倾向于破裂。但是,并非所有金属在室温下都是延性的(例如,某些BCC金属,高碳钢和金属玻璃杯可能相对脆),并且加热玻璃弯曲的玻璃弯曲主要是由于其玻璃转换温度以上的粘性流量,而不是金属式耐耐耐高压。 测量延展性 拉伸测试是量化延展性的最常见方法:标本以单轴张力加载到骨折中,延展性据报道是休息时伸长率的百分比和降低面积的百分比。 休息时伸长百分比(a%) 骨折时量规长度的百分比增加:a%=(lf -l0)/l0×100%,其中l0是原始量规长度,而LF是断裂时的最终长度。较高的A%表示拉伸延展性更大。 减少面积百分比(RA%) 裂缝位置的横截面的百分比降低:RA%=(A0 - AF)/A0×100%,其中A0是原始面积,AF是休息时的最小面积。大的RA%反映出明显的颈部和强烈的颈后延展性。 (对量规长度不太敏感;对于非常薄的纸张而言并不理想。) 这两种措施通常是拉伸测试的一部分。例如,可以描述钢样品的伸长率20%,而在休息时降低了60%的面积 - 表明延性行为。相比之下,脆性陶瓷可能仅显示1%的伸长率,而本质上可能显示出0%的面积减少(几乎没有变薄)。伸长率和降低越大,材料的延展性就越大。 可视化延展性的另一种方法是在应力 - 应变曲线上,这是从拉伸测试获得的图。绘制应力(相对变形)的应力(每单位面积)。此曲线上的要点包括: 杨的模量(E):线性弹性区域的斜率;刚度的度量。 屈服强度(σᵧ):塑性变形的发作(通常由0.2%偏移方法定义时,当不存在尖锐的屈服点)。 最终的拉伸力量(UTS):最大工程压力。超越标本的脖子;断裂发生后期,通常处于较低的工程压力下。 断裂点:标本最终破裂的地方。 延性材料(蓝色)与脆性材料(红色)的代表性应力应变曲线 延性材料的曲线在屈服后显示长塑料区域,表明它可以在骨折前保持较大的应变。相比之下,脆性材料的曲线在屈服点附近结束,几乎没有塑料区域。总而言之,在工程应力 - 应变图(对于规定的规格长度)上,延展性反映了裂缝的总应变 - 延性材料的长时间,脆性材料的较短。但是,明显的断裂应变取决于所选的量规长,一旦颈部开始定位,颈部开始定位,因此工程曲线不是颈后延展的直接衡量。因此,规格通常在休息时报告百分比伸长率(a%)以及降低面积百分比(RA%)。 延展性和延展性有什么区别? 延展性是一种材料在不破裂而伸展张力的能力。我们以拉伸测试的伸长百分比或减少面积来量化它。如果可以将金属吸入电线,则是延展性的。锻造性是一种材料在压缩方面变形的能力(不开裂,可以锤击,滚动或压入纸板);我们通过弯曲/扁平/拔罐测试或减小厚度可以耐受多少判断。 实际上:黄金,铜和铝都是高度延展且可延展的(非常适合电线和纸板)。铅非常具有延展性,但仅适中延展性(易于滚动成薄片,较差,作为细丝)。镁在室温下的延展性有限,而锌在变暖时会更具延展性。为了制造制造,选择延性合金用于绘画,深度拉伸和下拉的功能;选择可延展的合金滚动,冲压和锻造,在压缩占主导地位的地方。温度和晶体结构移动两个特性。快速规则:延展性=张力/电线;锻造性=压缩/表。 为什么延展性很重要 延展性是制造性和服务安全性安全背后的安静主力。在工厂中,它允许将金属卷成纸板,将其拉入电线并锻造而不会破裂。在现场,它使组件能够吸收能量,重新分配应力并在失败前提供警告。 制造的延性材料 高延展性通常意味着一种材料是可行的:它可以锻造,滚动,绘制或挤出成各种形状而不会破裂。低延展性(脆性)意味着该材料很难变形,并且更适合于铸造或加工等过程(在材料不强迫塑料形状过多地改变形状)之类的过程中。 锻造和滚动:这些过程通过锤击(锻造)或在掷骰(滚动)之间将固体金属变形为形状。延性金属耐受涉及的大塑料菌株。实际上,钢板/开花被热卷成薄板,板和结构形状,例如I光束,铝很容易被伪造成组件 - 金属在压缩载荷下流动。相比之下,像铸铁这样的脆性合金倾向于在沉重的变形下破裂,因此通常通过铸造到近网状形式来形状。 挤出和电线/栏绘图:挤出将金属推动通过模具制作长而恒定的截面产品。电线/条形图将固体库存通过模具降低直径。两者都依靠塑料流。可以将延性合金(例如铝,铜和低碳钢)挤出到试管和轮廓(例如窗框,热水链截面)中,并将其抽入细线。在加工温度下没有足够的延展性的材料倾向于检查或裂缝,这就是为什么玻璃或陶瓷不会以固态挤出/绘制的原因;他们的纤维是融化的。 深图:深色绘图形成轴对称的杯子和罐,并用拳头迫使薄板进入模具;法兰向内进食,而墙壁略微稀薄。足够的延性可防止分裂和皱纹。铝饮料罐头是经典的例子。 薄板金属弯曲和冲压:车身面板和外壳的一般弯曲和冲压需要延展性,以避免边缘裂纹和橙色 - 薄荷伸展时。钢制和铝等级是针对形成性量身定制的,因此可以将复杂的形状(例如,汽车引擎盖)盖章而不会故障。 金属3D打印(AM):延展性仍然很重要。当然的零件(尤其是来自激光粉床融合(LPBF))可以显示出由于细,质感的微观结构,残留应力和孔隙率而显示出降低的延展性。压力缓解和热等静止压力(髋关节),然后经常进行轻热处理,恢复延展性并降低开裂风险;然后,TI-6AL-4V和ALSI10MG等合金可以提供有用的服务延展性。 现实世界应用的延性材料 延展性不仅是实验室指标,还直接影响现实世界结构,车辆和设备的性能。这就是为什么它在工程和设计中重要的原因: 防止突然失败并提高安全性:延性材料逐渐失效:它们在断裂前产生和吸收能量,提供可见的警告并允许负载重新分配。在建筑物中,这就是为什么结构钢受到青睐的原因 - 超负荷的梁会弯曲而不是捕捉。钢筋混凝土遵循相同的逻辑:嵌入式钢钢筋增加延展性,因此成员可以在地震需求下弯曲而不是分开。 影响(地震和碰撞应用)中的能量吸收:在动态载荷下,延展性将影响能量变成塑料工作。钢框通过屈服来消散地震力,并以钢或铝折叠的汽车碎区域的控制方式以受控的方式降低机舱减速。现代人体结构平衡强度与延展性(例如DP/Trip Steels),并且航空航天Al/Ti合金保留足够的延展性,以造鸟,加压和冷soak耐受性。 […]
设计在数控加工中发挥着关键作用,因为它为整个制造过程奠定了基础。众所周知,数控加工使用计算机控制的机器来精确地从工件上去除材料。该工艺具有高度通用性、可重复性和精确性,此外,它还与多种材料兼容,从泡沫和塑料到木材和金属。 实现这些功能在很大程度上依赖于 CNC 加工的设计。有效的设计不仅可以确保零件的质量,还可以节省与 CNC 加工零件相关的生产成本和时间。 在本指南中,我们将讨论设计限制,并为 CNC 加工中遇到的最常见特征提供可操作的设计规则和建议值。这些指南将帮助您获得零件的最佳结果。 CNC 加工的设计限制 为了正确设计数控加工零件,我们首先必须清楚地了解工艺中固有的各种设计限制。这些限制自然是由切割过程的力学产生的,主要涉及以下几个方面: 刀具几何形状 大多数数控加工刀具具有圆柱形形状和有限的切削长度。当从工件上去除材料时,这些切削刀具会将其几何形状转移到零件上。这意味着,无论切削刀具有多小,CNC 零件的内角始终具有半径。此外,刀具的长度限制了可加工的最大深度。较长的工具通常刚性较低,这可能导致振动或变形。 工具访问 为了去除材料,切削刀具必须直接接近工件。切削刀具无法达到的表面或特征无法进行 CNC 加工。例如,复杂的内部结构,尤其是当零件内存在多个角度或特征被另一个特征阻挡或存在较大的深宽比时,可能会使工具难以到达某些区域。五轴数控机床可以通过旋转和倾斜工件来缓解一些刀具访问限制,但它们不能完全消除所有限制,特别是刀具振动等问题。 工具刚度 与工件一样,切削刀具在加工过程中也会变形或振动。这可能会导致公差更宽松、表面粗糙度增加,甚至在制造过程中刀具破损。当刀具长度与其直径之比增加或切削高硬度材料时,这个问题变得更加明显。 工件刚度 由于加工过程中会产生大量的热量和强大的切削力,刚性较低的材料(例如某些塑料或软金属)和薄壁结构在加工过程中容易变形。 工件夹持 零件的几何形状决定了它在数控机床上的固定方式以及所需的设置数量。复杂或不规则形状的工件很难夹紧,并且可能需要特殊的夹具,这会增加成本和加工时间。此外,当手动重新定位工件夹具时,存在引入微小但不可忽略的位置误差的风险。 CNC 加工设计指南 现在,是时候将这些限制转化为可操作的设计规则了。 CNC 加工领域没有普遍接受的标准,主要是因为行业和所使用的机器总是在不断发展。但长期的加工实践已经积累了足够的经验和数据。以下指南总结了 CNC 加工零件最常见特征的建议值和可行值。 内部边缘 建议垂直圆角半径:⅓ 倍型腔深度(或更大) 通常建议避免尖锐的内角。大多数数控刀具都是圆柱形的,因此很难获得锐利的内角。使用推荐的内角半径可以使刀具遵循圆形路径,从而减少应力集中点和加工痕迹,从而获得更好的表面光洁度。这也确保了使用适当尺寸的刀具,防止刀具太大或太小,从而保持加工精度和效率。对于 90 度锐角,建议使用 T 形槽铣刀或线切割,而不是减小拐角半径。 建议地面半径:0.5 毫米、1 毫米或无半径 可行的地面半径:任何半径 立铣刀刀具通常具有平坦或略圆的下切削刃。如果设计的底部半径与推荐值一致,则可以使用标准立铣刀进行加工。这种设计受到机械师的青睐,因为它允许使用广泛可用且易于使用的工具,这在大多数情况下有助于平衡加工成本和质量。虽然球头立铣刀可以适应任何底部半径,但由于其形状,它们可能会增加加工时间和成本。 薄壁 建议的最小壁厚:0.8 毫米(金属)、1.5 毫米(塑料) 可行的最小壁厚:0.5 毫米(金属)、1.0 毫米(塑料) 数控机床在加工非常薄的壁时受到限制,因为减小壁厚会影响材料的刚度并降低可达到的精度,可能会导致加工过程中振动增加。由于材料的硬度和机械性能不同,应根据具体情况仔细评估上述推荐和可行的值。对于更薄的壁,替代工艺(例如金属板制造)可能更可取。 洞 推荐孔径:标准钻头 […]
车床切削刀具是安装在车床上(无论是手动车床、木工车床还是数控车床)的专用工具,用于对旋转工件进行成形、切割或精加工。这些刀具通常由固定在车床刀架上的柄和直接与工件接合的切削刃组成。它们有各种形状、尺寸和材料可供选择,与不同的刀具路径结合使用时,可以执行一系列操作,例如车削、端面、螺纹加工和切断。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español