就像铝或 CNC加工材料现代制造业中。这主要是由于铜的出色电气和热导率,高腐蚀性,良好的强度和抗疲劳性以及独特的颜色。此外,它可以很容易地工作,泡沫,焊接和焊接。
我们需要了解铜的特征及其加工细节,以有效地执行CNC加工。请继续阅读 - 本文提供了您想知道的内容。
铜CNC加工是精度制造过程使用计算机数值控制(CNC)工具(CNC)工具和机器将铜材料形成所需的塑形。该过程产生具有复杂几何形状和精确尺寸的高质量,可靠的铜件,这在电子,航空航天,汽车和医疗制造等行业中至关重要。
铜在周期表上标记为具有原子数29的Cu。它具有独特的红橙色外观,在热导电性和导电性中仅次于银(Ag)。当我们谈论“铜”时,我们通常是指铜和铜合金。将它们分类的最常见方法是六个家庭:铜,稀释剂(或高铜)合金,黄铜,青铜器,铜尼克尔和镍银。
接下来,我们将介绍几种用于加工的铜和稀铜合金的类型。
C10100是最高的铜级铜,铜含量超过99.99%,氧气水平低至0.0005%(银将其视为杂质)。该等级具有出色的电导率(至少101%IACS -国际退火铜标准)和导热率。它的氧气含量非常低,可以最大程度地减少氢含糖的风险,从而无需开裂即可进行深度绘图或高还原图,并允许任何常规过程(例如弧形焊接,抗性焊接,悬挂,悬挂和焊接)将其连接起来,甚至是减少或真空条件。 C10100主要用于真空腔室组件,半导体连接,导线线,玻璃至金属密封和波导。
C10200也是无氧的铜,但纯净的纯度略低于C10100,最低铜含量为99.95%(包括银),氧气含量限制在最高约0.001%。它提供了几乎相同的功能优势,与C10100(无氢损伤等),通常在许多应用中可以互换。本质上,C10200可以被视为C10100的低级版本,以稍低的成本在一般应用中满足对无氧铜的需求。
ETP铜是最常见的铜。它必须至少为99.9%,并且通常具有0.02%至0.04%的氧气。 与铜一样,在确定纯度时,银(Ag)含量被计为铜(CU)。在电导率和导热率方面,C11000的实际性能基本上等于C10100和C10200。今天出售的大多数C11000均达到或超过101%的IACS,用于电导率,并在390 W/m·K附近提供热导率。此外,C11000更经济,被认为是一般电气应用的行业标准。
尽管C11000在正常条件下是非常延展的,但如果在富含氢气的环境中加热,它可能会遭受覆盖。这是因为C11000中的氧气以Cu₂o沉淀而存在,通常位于晶界。在升高的温度下,氢可以扩散到材料中,并与Cu₂o反应形成水蒸气(H₂O)。该反应会产生内部空隙或裂缝,这种现象称为氢含水或“氢疾病”。结果,C11000不适合气体焊接和高温悬挂。如果必须需要焊接,通常是通过在惰性气罩中或电阻焊接中通过电弧焊接(TIG,MIG)完成的,以防止氢拾取。
C12200在机械上也称为磷氧化铜或高磷磷铜,与C11000相似,但包括少量的磷(0.015-0.04%)。此添加有助于从金属中去除氧气,从而提高其焊接性和钎焊能力,同时防止氢化。 C12200也很容易被热形成,并且是变压器绕组,母线和其他需要可靠制造的电气组件的绝佳选择。
C14500是一种稀铜合金,含0.4-0.7%的胎尿和0.004–0.12%的磷。柜形成铜基质内的细分散沉淀物,在加工过程中充当碎屑破裂。与标准的铜可加工性额定值约为20%,这将其可加以可加解的评级提高到80-90%(自由切割的黄铜设定为100%)。它的电导率略有降低被迅速和精确加工的能力所抵消。
由于其出色的可加工性和高表面质量,它通常用于需要高精度切割和光滑表面饰面(例如精确开关,连接器和电子组件)的电气组件和连接器中。但是,柜员的存在对焊接关节稳定性产生负面影响;因此,诸如氧乙二烯焊接,斑点焊接和涂层金属弧焊接等过程通常不适合C14500。
C14700是一种自由装饰的铜合金,类似于C14500,旨在显着增强纯铜的可加工性。它含有0.2–0.5%的硫,形成硫化物沉淀,在C14500中,形态学和分布与牙酸酯沉淀的分布不同。
尽管某些制造商更喜欢C14500对于需要最佳的芯片控制和表面饰面的关键应用,但反馈表明,在某些焊接条件下,C14700中的硫化物沉淀影响焊接关节稳定性小于C14500中的牙萝卜质沉淀。但是,两者都不适合常规焊接。建议使用低温或惰性气体屏蔽电弧焊接(TIG或MIG)。此外,对于成本敏感或要求少的加工应用程序,C14700提供了可观的好处,并且可能更经济。
铜CNC加工过程使用复杂的设备,例如磨坊,研磨机和车床来在铜部件上创建精确而复杂的功能。以下是最常见的技术:
cnc铣削自动化切割速度,进料速度和工具移动,使铜工件的精确形成。它使用多点旋转切割工具,逐渐去除材料,以创建各种设计功能,包括凹槽,轮廓,凹口,平面表面,孔和口袋。由于铜的柔软度,通常使用2卷碳化物端磨机来防止芯片堆积并保持准确性。
在CNC转动中,旋转的铜工件是由固定的切割工具塑造的。该过程有效地产生了具有紧密公差的圆柱,螺纹和高精度部分。陶瓷或CBN插入物有时用于增加工具寿命和耐磨性。由于其速度和适应性,CNC转弯非常适合大批量生产。该方法相对具有成本效益,适用于加工许多电子和机械组件,例如电线连接器,阀门,总线杆,辐射器。
CNC钻孔在铜零件中创建精确和干净的孔。尽管CNC铣削也可以产生孔,但CNC钻孔专门用于深孔钻孔或高精度孔的形成。为了防止铜粘在钻头上并引起堵塞,使用具有优化切割角的锋利钻头来改善芯片疏散。此外,通常选择涂有锡的钻头以减少摩擦并改善工具寿命。
CNC研磨可完善铜加工的表面表面和尺寸精度。它采用磨料轮来实现紧密的公差和光滑的表面,使其非常适合高端电子或医疗设备。由于铜的涂抹趋势,使用细磨料和受控压力来防止材料变形。
EDM是一种非接触机加工方法,可通过受控的电气放电去除材料。对于很难使用常规工具很难升级的复杂铜设计,这是一个绝佳的选择。该技术对于在航空航天和电子产品中加工薄壁的部分,详细的腔和高精度组件特别有用。 电线EDM 和接收器EDM是两种主要类型。前者用于通过用薄导线作为电极作为二维轮廓(或扁平形状)进行精确切割,而后者则用于机加工三维腔和深孔,在该孔中,电极的形状与所需的几何形状相匹配。尽管EDM比传统方法慢,但它可以创建精确的,复杂的设计,并且机械应力最小。
CNC加工后,铜零件通常会表面处理通过删除加工痕迹,减少氧化和增强的耐腐蚀性,以提高功能性和美观性。
尽管铜被广泛用于其出色的可加工性和热特性,但它在CNC加工中提出了一些独特的挑战。以下是铜CNC加工过程中出现的主要困难。
纯铜很容易地粘附在工具表面上切割工具和形式的构建边缘(BUE),并加速工具降解。这导致加工效率低下和工件表面上的毛刺形成。与铜合金提供更好的芯片形成和可加工性不同,加工纯铜需要专门的工具和过程调整,以确保尺寸的精度和光滑的表面饰面。
铜的高延展性意味着它在加工应力下很容易变形。当它发生塑性变形(尤其是在冷工作期间)时,其晶体结构会累积位错,增加其强度和硬度,这种现象称为工作硬化。硬化的表面需要更高的切割力,并且对工具更加磨损,强调机器并影响尺寸的精度。为了减轻这种情况,使用了优化的切割参数,有效的冷却和润滑以及锋利的高质量工具。
铜具有快速进行和散热的能力,但是快速,局部的温度变化会导致热膨胀或收缩不均匀,从而导致工件失真。此外,过量的热量会降解切割工具。为了防止这些问题,重要的是要管理发热并确保加工过程中有效散热。
为了应对上述挑战,以下是确保铜的有效且具有成本效益的加工的主要考虑因素。
在加工之前,至关重要的是为您的应用选择最合适的铜材料等级。纯铜很昂贵,机器充满挑战。如果您需要纯铜的特性,但需要一种易于加工的材料,则可以进行自由体验的铜合金(例如柜子铜和含硫的铜),最好用于有效加工,并且更具成本效益。但是,如果还需要更高的机械强度和耐磨性,则
另一个重要的考虑因素是在此过程的早期审查铜零件的设计要求和规格。通过将设计与制造能力保持一致,您可以减少错误,重做,并确保最终部分符合预期的功能。以下是一些设计建议:
饲料率描述了CNC切割工具针对工件的速度。它直接影响工具寿命,表面饰面和加工效率。高饲料速率会导致温度升高太快,从而导致诸如聊天,工具挠度和加工铜的精度降低的问题。为了防止这些问题,建议将低到适中的饲料率应用。
选择右切割工具对于铜CNC加工来说至关重要。碳化物工具是高速加工的首选,因为它们在升高温度下保持硬度并且具有出色的耐磨性。钻石涂层工具最适合纯铜和精密应用,因为它们可以防止芯片堆积和材料粘附。钴高速钢(HSS)工具可用于低速操作,但往往更快。此外,抛光的工具长笛改善芯片疏散并减少材料涂抹。在加工铜之前,请确保将切割工具锐化到锋利的尖端,以获得最佳性能。
铜CNC加工需要精确,专业知识和仔细的材料选择,以进行高质量,具有成本效益的生产。本文提供了指导您的物质选择并帮助您避免常见加工问题的关键见解。但是,成功制造还取决于拥有高级CNC技术和行业专业知识的值得信赖的合作伙伴。对于可靠的铜及其合金的CNC加工, chiggo 在这里提供帮助。 立即与我们联系,让我们开始!
压力和压力是描述材料对力的反应方式的两个最重要的概念。应力是负载下材料中每单位区域的内力,而应变是由施加力引起的材料形状的变形或变化。 但是,压力与压力之间的关系远远超出了理论 - 这对于合理的工程决策至关重要。通过并排比较它们,我们可以更好地预测材料的性能,可以安全变形的程度以及何时失败。本文探讨了他们的定义,差异,关系和实际应用。 在我们详细了解详细信息之前,您可能会发现此简短的介绍性视频和压力很有帮助: 什么是压力? 压力是材料产生以抵抗外部负载的每单位面积的内力。从显微镜上讲,施加的载荷会引起反对变形并“固定”结构的原子间力。这种内部阻力是我们衡量的压力。 根据如何施加负载,压力被归类为: 拉伸应力(σt)和压力应力(σc):这些是垂直于横截面区域的正常应力。 剪切应力(τ):由与横截面区域平行作用的切向力引起的。 扭转应力(τt):扭矩或扭曲引起的剪切应力的特定形式。 其中,拉伸压力是工程设计中最根本的压力类型。计算公式是: 在哪里: σ=压力(PA或N/m²;有时PSI) f =施加力(n) a =施加力的原始横截面区域(m²) 如何测量材料的应力 直接测量应力是不可能的,因此,我们必须测量施加的力或结果变形。以下是关键测量技术的简洁概述: 方法 /技术原则测量设备 /工具准确性和精度常见应用通用测试机(UTM)测量力(F),计算应力= f/aUTM具有集成负载电池★★★★★(高精度)基本材料测试:应力 - 应变曲线,机械性能评估应变量表测量应变(ε),通过σ= E·ε计算应力(假设线性弹性) 应变计,数据采集系统★★★★☆(高)组件应力分析;疲劳评估;嵌入式结构监测延伸计衡量规格的变化,计算ε和σ接触或非接触式延伸仪★★★★☆(高)标本的拉伸测试;验证弹性模量和屈服应变数字图像相关(DIC)光学方法,跟踪全场表面变形高速相机系统,DIC软件★★★★☆(全场)全场应变分析;裂纹跟踪;物质不均匀研究超声应力测量在压力下使用材料的波速变化超声波探测器★★★☆☆(中度)残余应力检测;焊接接头和大型结构的应力监测X射线衍射(XRD)测量由内部压力引起的晶格失真XRD衍射仪,专业软件★★★★☆(高精度;位于表面层)薄膜,焊接区域,金属和陶瓷中的表面残留应力光弹性通过光学干扰条目在透明双折射材料中可视化压力偏振光设置和双重聚合物模型★★★☆☆(对半定量定性)教育演示;透明模型中的实验应力分析微/纳米级表征技术 EBSD,微拉曼,纳米凹陷等技术提供微观或纳米级应变/应力映射 电子或基于激光的系统,图像分析软件★★★★☆(高精度;局部微/纳米尺度) 微电子,薄膜,纳米构造,复合界面行为 什么是应变? 应变是对材料进行外力时材料发生的相对变形的量度。它表示为无单位数量或百分比,代表长度(或其他维度)对原始长度(或尺寸)的变化。 应变的类型对应于施加的应力:拉伸应变,压缩应变或剪切应变。 正常应变的公式是: 在哪里: ϵ =应变(无量纲或以%表示) Δl=长度变化 l0=原始长度 如何测量材料应变 各种方法可用于测量应变。最常用的技术是应变测量值和伸展指标。下表总结了测量材料应变的常见方法: 方法感知原理传感器 /传感器测量场景评论应变量表阻力变化箔型应变量表静态或低频应变;常用广泛用于行业;低成本;需要粘合键和布线连接延伸计位移夹式 /接触式延伸计材料测试;全截面测量高准确性;不适合动态测试或高度局部应变数字图像相关(DIC)光学跟踪相机 +斑点图案全场应变映射;裂纹繁殖;复杂形样品非接触; 2D/3D变形映射;昂贵的系统压电传感器压电效应压电膜或水晶动态应变,压力,冲击,振动高频响应;不适合静电测量纤维bragg光栅(FBG)光学(布拉格反射)FBG光纤传感器长距离的分布式或多路复用测量免疫EMI;适合航空航天,能源和智能结构激光多普勒振动仪(LDV)多普勒效应LDV激光探针动态应变/速度测量和表面振动分析非接触;高分辨率;昂贵的;对表面条件敏感 压力与应变的关键差异 以下是一个简短的表,提供直接概述: 方面压力拉紧公式σ= f / aε=Δl /l₀单位PA(N/m²)或PSI(LBF/in²)无量纲或%原因外力压力引起的变形影响产生内力来抵消外部负载;如果过高改变材料的几何形状;可在弹性极限内回收,永久性超出产量点行为材料必须抵抗的每个区域的内力。根据分配,它可能导致压缩,张力,弯曲或扭转描述了在施加的应力下材料变形的程度。可以是弹性的或塑料的 压力和压力如何相互关系 压力会导致应变。应力 - 应变曲线图可以通过针对施加的应力绘制应变(变形)逐渐增加载荷的变形。让我们回顾一下其要点: 1。弹性区域(点O […]
不锈钢只是众多钢种中的一种。它不仅具有强度和韧性,而且还具有优异的耐腐蚀性、良好的机械加工性和焊接特性。它被认为是一种兼具耐用性和成本效益的理想数控加工材料。
随着工业4.0时代的到来,CNC(计算机数控)加工已成为现代制造业的基石。这项利用计算机控制机床的技术以其高精度、高效率和一致性彻底改变了传统机械加工。然而,随着对更复杂和更精密部件的需求不断增长,传统的 3 轴或 4 轴 CNC 加工往往无法满足要求。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español