さまざまな加工工程において、工具とワークの非接触を実現する加工方法が欲しい場合があります。当然、放電加工 (EDM) について考えることになります。
EDM の起源は 18 世紀後半にまで遡ります。ジョセフ・プリーストリーという名前の先駆者は、実験で放電によって電極から物質が除去されることを観察しました。この現象は、放電侵食としても知られています。 1940 年代に、このプロセスは 2 人の研究者、ソ連の物理学者 B. R. ラザレンコとアメリカの技術者ハロルド スタークによって独自に開発されました。しかし、商用 EDM 機械が利用可能になり、このプロセスが広く産業に採用されるようになったのは 1960 年代になってからです。
これらの初期の機械は、1960 年代後半から 1970 年代前半にかけてのワイヤ放電加工 (ワイヤ EDM) の開発への道を切り開き、精密加工能力にさらに革命をもたらしました。それ以来、EDM テクノロジーは大幅な進化を遂げ、現在では航空宇宙、自動車、医療製造などのさまざまな業界で複雑な形状や機能を製造するための一般的な方法となっています。
この記事では、ワイヤ EDM について詳しく説明し、その動作メカニズム、適切な材料、さまざまな用途について説明します。総合的な理解が得られることを願っています。

ワイヤ放電加工をより深く理解するために、まず放電加工でどのように放電するかを明確にしましょう。
放電加工 (EDM) は、放電/火花を発生させてワークピースから材料を除去する精密加工プロセスです。 通常、2 つの電極間で電気スパークを発生させます。電極の 1 つはツール電極として知られ、一般にツールまたは電極と呼ばれ、もう 1 つはワークピース電極またはワークピースと呼ばれます。
電極とワーク間に高電圧パルス電流を流すことにより、スパークや放電が発生し、ワーク表面の材料を溶融・蒸発させて材料を除去します。電極とワーク間のギャップは適応制御システムにより調整され、安定した電極間距離を保ちます。これにより、一貫した正確な材料除去率が保証され、1 秒間に最大数百万回の放電が発生しても最適な加工条件が維持されます。
ワイヤ EDM 機械では、2 つの電極がワイヤとワークピースになります。ワイヤーは通常、真鍮または層状銅で作られており、直径は通常 0.1 ~ 0.3 mm の範囲です。 CNC によって制御される切削工具として機能し、ワイヤ EDM 切断プロセス中のワークピースとの機械的接触を回避できます。

簡単に言うと、ワイヤ EDM は、誘電性流体を含む細い電極ワイヤを使用し、正確にプログラムされた経路に従ってワークピース (通常は導電性材料) を切断または成形する非接触サブトラクティブ製造プロセスです。

放電加工機では、以下のような数種類のワイヤがよく使用されます。
真鍮は、導電性が高く、比較的コストが低いため、ワイヤ放電加工で最も一般的に使用されるワイヤ材料です。費用対効果と性能の絶妙なバランスを実現し、汎用の放電加工作業に適しています。
銅線は真鍮に比べて優れた導電性を備えているため選択されます。これらは、精密加工やより高い切削速度が必要な場合に特に役立ちます。ただし、銅は一般的に真鍮よりも高価です。
これらの材料は、非常に高い精度と優れた熱安定性が必要な状況で使用されます。これらはより高価であり、融点と機械的強度が高いため、通常は特殊な用途向けに予約されています。
これらのワイヤは通常、真鍮または銅で作られたコアワイヤで、亜鉛や拡散焼き鈍し銅の層などの別の材料でコーティングされています。コーティングはワイヤの導電性と耐摩耗性を向上させ、加工性能の向上と工具寿命の延長につながります。たとえば、亜鉛被覆ワイヤは、より良い表面仕上げとより速い切断速度を実現することで知られています。
これらのタイプのワイヤは、加工される特定の材料、望ましい表面仕上げ、精度レベルなどの要因に応じて EDM 機械で使用されます。どの種類のワイヤであっても、ワイヤは放電過程で劣化したり故障したりするため、一度使用すると廃棄されるディスポーザブルです。適切なメンテナンスとワイヤの慎重な取り扱いは、セットアップを最適化し、中断のない生産を確保し、破損や精度の低下などの問題を最小限に抑えるために重要です。
ワイヤ EDM は、主に金属などのさまざまな硬質導電性材料の複雑な輪郭や空洞を切断するために使用される精密な機械加工プロセスです。仕組みは次のとおりです。

ワイヤとワークピースが誘電性流体 (脱イオン水または油) に浸されると、電源を接続することにより、ワイヤは希望の電圧まで急速に充電されます。電圧が適切なレベルに達すると、スパークがワイヤとワークピースの間のギャップを埋め、材料のごく一部を溶かします。
ワークピースにドリルで穴を開けるか、端から切断を開始することが重要です。加工領域内では、各放電がワークピースにクレーターを形成し、ワイヤに衝撃を与えます。ワイヤーを傾けることにより、テーパーや上下の形状が変化した部品を作成することが可能になります。
このプロセスは、過熱を防止して破片を除去するために誘電性の液体中で行われ、その結果、ワークピースの表面に小さなクレーターが形成されます。プログラムに従って、これらの繰り返しの放電の発生は、部品の所望の形状が生成されるまで継続されます。
他の金属切断プロセスと比較して、ワイヤ放電加工には多くの利点があります。最も顕著なものを以下に示します。
ワイヤ EDM は非常に高い加工精度を達成でき、通常は数ミクロンの位置精度に達します。専用の高精度機械は、1000 万分の 1 インチ (0.000001 インチ) の精度を達成できます。切断部品では、0.0001 インチという厳しい公差が維持されるのが一般的です。
ワイヤ放電加工による精密かつ正確な切断には、1) ワークのさらなる加工や仕上げが不要、2) バリや歪みが残らない、という 2 つの優れたメリットがあります。
ワイヤ EDM は、さまざまな硬さや脆さの導電性材料を加工できます。プリハードンダイス鋼、チタン、ステンレス鋼、タングステン、モリブデンなどの熱処理材料の切断に特に適しています。
ワイヤ放電加工は非接触加工方法です。切断プロセスでは電気スパークが使用され、工具とワークピース間の物理的接触が含まれないため、機械的ストレス、加熱衝撃、またはワークピースの歪みのリスクが最小限に抑えられます。これは、繊細な材料や壊れやすい材料を加工する場合に特に有益です。
ワイヤーを操作して、さまざまな角度や、テーパー形状や輪郭形状などの複雑な形状を作成できます。ワイヤ放電加工は、小さな部品の加工や最小限の半径で鋭利なコーナーを切断するのに適用できます。
ワイヤ EDM は、従来の機械加工では困難なことが多かった硬い材料に細いねじ山を加工するのに優れています。さらに、ワイヤ EDM は、複数の部品の積み重ね、ストリング、およびネストの効率を実証します。
ワイヤ EDM には多くの利点がありますが、いくつかの制限もあります。
ワイヤ EDM での加工に適しているのは導電性材料のみであるため、プラスチック、複合材料、または天然材料には適していません。
フライス加工や旋削などの他の加工プロセスと比較して、ワイヤ EDM は通常、材料の除去速度が遅くなります。
ワイヤー EDM マシンは購入と維持に費用がかかります。さらに、ワイヤは 1 回使用すると廃棄されるため、ワイヤ電極やその他の消耗品の費用が運営コストに加わります。

ワイヤ放電加工は、その特殊な加工プロセスと利点により、多くの分野で使用されています。一般的なアプリケーションをいくつか示します。
ワイヤ放電加工は、さまざまな業界の金型、ダイ、パンチの製造に広く使用されています。精密で複雑な成形に優れているため、複雑な工具部品の製作には欠かせないものとなっています。

航空宇宙部品、特に特殊合金で作られた部品は、航空宇宙用途での安全性と性能を確保するために高い精度と信頼性を必要とします。ワイヤ EDM は、精度と一貫性を維持しながら、厳しい公差で部品を加工できます。さらに、ワイヤ EDM は、タービンブレード、小型ノズル、エンジンコンポーネントなどの航空宇宙部品の製造において、再現可能な結果と高度な品質保証手段を提供できます。
医療業界では、チタンやステンレス鋼などの硬質材料で作られた小さくて複雑なコンポーネントが必要になることがよくあります。ワイヤー EDM はこれらの部品を高精度で製造し、歯科インプラントや外科器具の小さな構造や穴などの複雑な形状の切断を完了できます。
ワイヤ放電加工は、ギア、燃料インジェクター、エンジン部品などの精密部品を製造するために自動車分野で使用されています。これは、プロトタイプの製造や特殊な自動車部品の少量生産に特に役立ちます。

これまでのところ、私たちはワイヤー EDM について全体的に理解しています。あなたのプロジェクトを考慮すると、ワイヤー放電加工による加工は適していますか?ご不明な点がございましたら、お気軽にお問い合わせください。
10 年を超える機械加工の経験を持つ Chiggo は、CNC 機械加工やその他の付加価値を含む幅広い製造機能を提供します。プロトタイピングと生産のあらゆるニーズに対応するサービス。即時見積もりをリクエストするには、お問い合わせください。

ワイヤ放電加工 (ワイヤ EDM) 機械は通常、次のようないくつかの主要コンポーネントで構成されます。
ワークテーブルはワークピースを所定の位置に保持し、複数の軸 (通常は X、Y、Z 軸) での正確な移動を可能にします。この動きにより、ワイヤ電極は複雑な形状や輪郭を切断することができます。
電源は、ワイヤ電極とワークピースの間に火花放電を発生させるために必要な電気エネルギーを生成します。放電の電圧、電流、パルス幅を制御します。
ワークを切断するための電極として使用される細い金属線。このワイヤは通常、真鍮、銅、またはタングステンでできており、放電が発生するツールとして機能します。
ワイヤ EDM マシンには 2 つの電極があり、それぞれワイヤ (カソード) とワークピース (アノード) を指します。
脱イオン水などの誘電性流体は、破片を洗い流し、ワイヤとワークピース間の安定した放電を維持するために使用されます。また、加工プロセス中にワークピースとワイヤを冷却するのにも役立ちます。
制御システムは、オペレータが加工パラメータを入力し、機械の動作を制御し、加工プロセスを監視できるようにするソフトウェアおよびハードウェア コンポーネントで構成されます。これには、コントロール パネルやコンピューター インターフェイスなどのインターフェイスが含まれます。
ワイヤ ガイドにより、加工中にワイヤ電極が真っ直ぐで適切な位置に保たれます。テンションシステムはワイヤーに適切な張力を維持して破損を防ぎ、安定した切断性能を保証します。
一部の高度なワイヤ EDM マシンは、自動ワイヤ通しシステムを備えており、ワークピースにワイヤ電極を正確に通すのに役立ち、時間を節約し、手作業を軽減します。
ワイヤ EDM 加工で使用される誘電性流体は、加工プロセスからの破片で汚染される可能性があります。濾過システムはこれらの汚染物質を除去し、誘電性流体の有効性を維持します。
1.ワイヤー放電加工以外に利用できる放電加工にはどのようなものがありますか?
ワイヤ EDM の他に、他に 2 つの主要なタイプの放電加工 (EDM) プロセスがあり、それぞれ、誘電性の流体に浸されたツール電極とワークピースの間の放電によって材料を除去する同じ基本メカニズムを利用しています。
シンカー EDM: 従来の EDM またはラム EDM としても知られるこのタイプは、通常はグラファイトまたは銅で作られた、ワークピース内の目的のキャビティを反映する事前に成形された電極を使用します。たとえば、ピラミッド型の電極を使用して、対応するピラミッド型のキャビティを作成します。シンカー EDM は、複雑な 3D 形状の金型、金型、コンポーネントの製造に一般的に使用されます。プラスチック射出成形、ダイカスト、鍛造などの金型のキャビティや複雑な形状の成形に特に効果的です。

穴あけ EDM または高速穴 EDM: この方法では、回転管状電極を使用して材料を侵食し、厳しい公差で正確な穴を高速で穴あけできます。これは、タービンブレードの冷却穴、燃料噴射ノズル、小さなオリフィス開口部など、小さくて深く正確な穴を作成するために特に使用されます。
2. EDM とワイヤーカット EDM の違いは何ですか?
EDM (一般にシンカー EDM と呼ばれます) とワイヤカット EDM の主な違いは、使用される電極の種類にあり、これは用途に直接影響します。ワイヤカット EDM は、連続した細いワイヤを電極として使用し、ワークピースに自動的に送られます。このセットアップは高い柔軟性を提供し、複雑な切断を正確に行うことができ、さまざまな金属の詳細な輪郭や空洞を切断することができます。
対照的に、シンカー EDM は、通常は銅またはグラファイトで作られたカスタム形状の電極を使用します。この電極は、所望のキャビティまたは形状を反映するように事前に機械加工されています。この方法はワイヤカット EDM よりも柔軟性に劣りますが、ワークピースの基板の奥深くに繰り返し、正確で複雑な形状を作成することに優れています。
CNC 加工は、コンピュータ制御のツールを使用してさまざまな材料から精密部品を作成する多用途の製造プロセスです。これらの材料はCNC加工の基礎を構成し、加工結果に直接影響を与えます。したがって、多様な CNC 加工材料を認識し、特定の用途に適切な材料を見極める能力を身に付けることが重要です。
剛性の弾性率と呼ばれることもあるせん断弾性率は、せん断力にさらされたときに材料がどれほど硬くなるかを測定する基本的な材料特性です。日常的には、ある部分が別の部分に平行にスライドすると、変化を形作る物質がどれほど耐性があるかを説明します。この記事では、せん断弾性率、それがどのように計算されているか、それが他の弾性係数とどのように比較されるかを、それを明確にするための実際のエンジニアリングの例を説明します。 せん断弾性率とは何ですか? 図では、ブロックは下部に固定され、力Fは上面に平行に適用されます。この力は水平変位Δxを引き起こし、ブロックは斜めの形状に変形します。傾斜角θは、形状がどれだけ歪んでいるかを記述するせん断ひずみ(γ)を表します。 せん断応力(τ)は、力が作用する表面積Aで分割された適用力です。 τ= f / a せん断ひずみ(γ)は、ブロックの高さに対する水平変位の比率です。 γ=Δx / L(小角の場合、ラジアンのθ≈γ) μまたはSで示されることもあるせん断弾性率(g)は、このタイプの歪みに対する材料の耐性がどれほど耐性であるかを測定します。せん断ストレスとせん断ひずみの比として定義されます。 g =τ /γ=(f / a) /(Δx / l)=(f・l) /(a・Δx) SIシステムでは、せん断弾性率の単位はPascal(PA)であり、1平方メートルあたり1つのニュートン(n/m²)に等しい。 Pascalは非常に小さなユニットであるため、固体材料のせん断弾性率は通常非常に大きいです。このため、エンジニアと科学者は通常、Gigapascals(GPA)でGを発現します。ここで、1 GPA = 10〜Paです。 せん断弾性率 以下の表は、一般的な材料の典型的なせん断弾性率を示しています。 材料せん断弾性率(GPA)アルミニウム26–27真鍮35–41炭素鋼79–82銅44–48鉛5–6ステンレス鋼74–79錫〜18チタン(純粋)41–45コンクリート8–12ガラス(ソーダ - ライム)26–30ウッド(ダグラスファー)0.6–1.2ナイロン(未熟練)0.7–1.1ポリカーボネート0.8–0.9ポリエチレン0.1–0.3ゴム0.0003–0.001ダイヤモンド480–520 これらの数字は、剛性がどれだけ異なる材料が異なるかを示しています。金属は、数十のギガパスカルにせん断弾性率を持っている傾向があります。セラミックとガラスは同様の範囲にありますが、コンクリートはやや低いです。プラスチックには通常、約1 GPA以下があります。さらに柔らかいのはゴムとエラストマーであり、せん断弾性率はメガパスカルの範囲にのみです。最上部では、ダイヤモンドは何百人ものギガパスカルに到達し、最も硬い既知の材料の1つです。 高せん断弾性率を持つ材料は、変形またはねじれを強く抵抗します。これが、橋、建物、航空機のフレームなどの構造に鋼とチタンの合金が不可欠である理由です。それらの剛性は、梁とファスナーが重い負荷の下で曲げたりせん断したりしないようにします。ガラスとセラミックは、脆弱ですが、比較的高い弾性率を持っていることからも恩恵を受けます。レンズや半導体ウェーハなどのアプリケーションで正確な形状を維持するのに役立ちます。非常に高いせん断弾性率を持つダイヤモンドは、大きな力の下でもほとんど弾性ひずみを受けません。これが、ダイヤモンド切削工具が鋭いままである理由です。 一方、柔軟性が利点である場合、低せん断弾性率を持つ材料が選択されます。ゴムやその他のエラストマーは、振動ダンパー、アザラシ、および地震ベースのアイソレーターに使用されます。これにより、柔らかさが簡単にせん断し、エネルギーを吸収できるためです。ポリエチレンやナイロンなどのポリマーは、柔軟性と強度のバランスをとっています。そのため、軽量構造と衝撃耐性部品で広く使用されています。木材のような天然素材でさえ、強い方向性の違いを示しています。穀物全体で、そのせん断弾性率はそれに沿ってはるかに低く、ビルダーはせん断力の下での分割を避けるためにこれを説明する必要があります。 せん断弾性量計算 さまざまな試験方法を使用してせん断弾性gを決定することができ、選択は材料と静的値または動的値が必要かどうかに依存します。金属およびその他の等方性固体の場合、一般的なアプローチは、ロッドまたは薄壁のチューブでの静的ねじれテストです。ねじれの角度と適用トルクの勾配により、Gが与えられます。ASTME143は、構造材料の室温手順を指定します。 動的測定のために、ねじれ振り子を使用できます。標本質量システムの振動期間を測定し、(複雑な)せん断弾性率に関連付けます。 ASTM D2236は、プラスチックのこのアプローチを説明するレガシー基準です。 繊維強化複合材料の場合、ASTM D5379(IOSIPESCU)やASTM D7078(V-Notched Rail Shear)などのVノッチングメソッドで面内せん断弾性率が得られます。 ASTM D4255(レールせん断)は、ポリマーマトリックス複合材料にも広く使用されています。 ASTM A938は、ねじれ性能(延性など)を評価することを目的とした金属ワイヤのねじれテストであることに注意してください。 Gを決定するための標準的な方法ではありません。 Gが直接測定されず、他のデータから計算される場合があります。等方性材料の場合ヤングモジュラスeポアソンの比率ν、 g = e […]
機械学では、「ねじ山」という用語は特に「ねじ山」を指します。これは、コネクタ、留め具、伝達要素に不可欠な重要なコンポーネントです。ねじ山は、ボルト、ナット、ねじ、送りねじなど、さまざまな機器や構造物に広く使用されており、その機能を果たしています。製造業でも日常生活でも、ねじ山の使用はいたるところで行われています。これらがなければ、ほとんどのマシンは正しく動作できません。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español