製造プロセスにより、製品の表面に不規則なテクスチャが残ることがよくあります。高品質の仕上げに対する需要が高まるにつれ、表面仕上げの重要性がますます重要になっています。表面仕上げは、美しさや滑らかな外観を実現することだけを目的とするものではありません。製品の機能、耐久性、全体的なパフォーマンスに大きな影響を与えます。
ガイドを参照して表面仕上げについてすべてを学び、目的の仕上げを実現し、CNC 加工。
表面仕上げは、表面テクスチャーまたは表面トポグラフィーとも呼ばれ、部品の表面の全体的な滑らかさ、質感、および品質を指します。これは、製品の外観だけでなく性能や機能にも影響するため、製造およびエンジニアリングにおいて重要な要素です。
表面仕上げの主な特徴には、主に次の 3 つの側面が含まれます。

表面粗さ
表面粗さとは、肉眼では見えないかもしれませんが、表面を指でなぞると感じることができる、表面上の小さくて細かい間隔の凹凸を指します。
粗さは、Ra (平均粗さ) などのパラメータを使用して測定されることがよくあります。 Ra 値が低いほど凹凸が少なく、より小さいことを示し、その結果、表面がより滑らかになり、摩擦と摩耗が減少します。専門家が表面仕上げと呼ぶ場合、特に表面粗さを意味することがよくあります。
うねり
うねりは、表面上のより大きく、より広い間隔の凹凸を包含するため、表面粗さとは異なります。これらは、製造プロセス中の機械の振動、たわみ、または反りなどの要因によって発生する可能性があります。表面の波打ちは、部品の嵌合方法やシール能力に大きな影響を与える可能性があります。
レイ(表面パターンの方向)
レイは、表面パターンの主な方向であり、通常は使用される製造プロセスに起因し、平行、垂直、円形、網目状、放射状、多方向、または等方性 (無方向) になります。
撚り方向は、摩擦、潤滑、美観に影響します。光学部品では、特定の積層方向により光の散乱が低減され、透明度が向上します。

前述したように、表面仕上げは製品の外観、性能、耐久性、および全体的な品質に大きな影響を与えます。まさにそれが、表面仕上げが製造プロセスにおいて重要な役割を果たす理由です。ここでは、表面仕上げが非常に重要な役割を果たす理由を詳しく見てみましょう。
美学: 製品の第一印象は、多くの場合、外観と触感に基づいて決まります。高品質の表面仕上げは視覚的な魅力を高め、特に消費財の場合、お客様の認識と満足度に大きく影響します。
摩擦と摩耗: 特に機械用途では、より滑らかな表面仕上げにより可動部品間の摩擦と摩耗が軽減され、それによって熱の発生が最小限に抑えられ、コンポーネントの効率と寿命が向上します。
シールとフィッティング: 適切な表面仕上げにより、部品のシールとフィッティングが向上し、漏れを防ぎ、正確な組み立てが保証されます。
疲労強度: 表面が滑らかになると、応力集中と亀裂発生の可能性が軽減され、疲労強度が向上します。
耐食性: より良い表面仕上げにより、腐食剤が蓄積する可能性のある隙間が最小限に抑えられ、耐食性が向上します。
コーティングの密着性: 表面の質感は、コーティングや塗料が製品にどの程度密着するかに影響を与える可能性があります。
導電性と熱放散の向上: 電子および熱用途では、高品質の表面仕上げにより導電性が向上し、熱放散が促進されます。
光の反射と散乱の制御: 光学用途では、表面仕上げが光の反射と散乱に影響します。
表面仕上げが製造に与える重大な影響を考慮すると、表面粗さの測定は生産プロセスにおいて不可欠です。これにより、製品の実際の表面特性を正確に把握し、デザインや機能の要件を確実に満たすことができます。
表面粗さの測定には、さまざまな測定技術とデータ分析を使用して、製品の表面プロファイルの相対的な滑らかさを評価することが含まれます。この粗さを定量化するために最も一般的に使用される数値パラメータは Ra です。
表面粗さの測定にはいくつかの方法があります。測定手法の主な種類は次のとおりです。

接触方法には、スタイラス プローブ器具などのツールで表面に物理的に接触することが含まれます。この装置は、表面の横方向に対して垂直に移動して、表面プロファイルをトレースします。プローブの動きにより詳細な表面等高線マップが生成され、表面粗さに関する正確なデータが得られます。
これらの方法は主に、表面との直接接触によって損傷が生じない製造現場で使用されます。ただし、プローブ動作によって変形する可能性のある繊細な表面や柔らかい表面には適さない場合があります。

光学プロフィロメーター/白色光干渉計: この技術には、光ビームを表面に投影し、反射光のパターンを測定して表面の高さの変動を正確に判断し、それによって詳細な 3D 表面プロファイルを作成することが含まれます。精密工学、半導体、光学産業における繊細な表面や柔らかい表面。ただし、優れた反射特性を備えた表面が必要であり、装置は高価になる可能性があります。
レーザー走査型共焦点顕微鏡: この方法では、集束レーザーを使用します。ビームを照射して表面をスキャンし、地形の高解像度 3D 画像を生成します。生物医学研究、材料科学、精密工学における複雑な 3D 表面の分析に最適です。ただし、費用がかかり、操作も複雑です。
3D レーザー スキャン: この技術では、レーザーを使用して表面の地形をキャプチャし、3D モデルを作成します。これは通常、より大きな表面に使用され、包括的な表面プロファイルを迅速に生成できます。自動車、航空宇宙、建築用途における大規模または複雑な表面に適しています。広い領域を効率的に処理できますが、他の方法と比べて分解能が低いため、高精度の測定や非常に小さな表面の特徴には適していません。

比較方法には、問題の表面を既知の粗さを持つサンプルの標準セットと比較することが含まれます。
これらの方法は迅速かつコスト効率が高く、実稼働環境での日常的なチェックに適しています。ただし、これらはより主観的なものであり、高精度を必要とするアプリケーションにはあまり適していません。
インプロセス法では、表面粗さ測定を製造プロセスに直接組み込むことができます。インライン表面形状計や CNC マシンの統合センサーなどのツールが使用されます。これらのツールは表面仕上げに関するリアルタイムのデータを提供し、即時の調整を可能にします。
このアプローチは、連続生産ラインや自動製造システムにおけるリアルタイムの監視と品質管理に特に役立ちます。ただし、スペース、コスト、または複雑さの制約により、測定システムをプロセスに統合することが不可能な状況では、制限される可能性があります。
上記のすべての測定方法について、 記録を作成する際は測定単位に注意してください。米国では粗さ測定にマイクロインチが使用され、通常はμinと表記されますが、マイクロメートルは国際的に使用されており(SI)、μmまたはumと表記されます。簡単な変換は次のとおりです。

上記のような表面粗さ表の記号やパラメータを理解しないと、複雑な製造現場で途方に暮れてしまいます。これらの指標は地図上のマーカーのようなもので、表面の品質、機能、適合性が期待を確実に満たしているかどうかをガイドします。
Ra: 平均粗さ

Ra は、平均線からの粗さプロファイルの平均変動として定義されます。数学的に言えば、これは、評価長さにわたって平均線から測定された表面高さ偏差の絶対値の算術平均です。
Ra は表面粗さに対して最も一般的に使用されるパラメータです。Ra は、表面の質感を単純かつ一般的に示し、極端な山や谷に過度に影響されることなく、全体的な粗さのバランスのとれたビューを提供するためです。

ここで:L は測定長さです。y(x) は表面プロファイル上の特定の点から平均線までの垂直距離です。
この平均化により、Ra 値は粗さのばらつきの実際の高さよりも低くなります。
Rz: 平均最大身長

Rz を計算するには、評価長を 5 つの等しい長さに分割します。 Rz は、これら 5 つの等しいサンプリング長のそれぞれ内の最大の山から谷までの高さの平均です。
Rz は、Ra と比較して表面粗さをより詳細に表現し、表面プロファイルの山と谷に対してより敏感です。これは、最も高い山と最も深い谷がシールやガスケットの性能に影響を与える可能性があるシール面など、極端な表面質感が重要な業界でよく使用されます。
実際には便宜的に「7.2×Ra=Rz」という近似式が用いられることもあります。ただし、これは大まかな推定値であり、必ずしも正確であるとは限りません。
Rp: プロファイル ピークの最大高さ
Rp は、評価長さ内の平均線から測定された表面プロファイルの最も高い単一ピークの高さです。
Rv: プロファイル谷の最大深さ
Rv は、評価長さ内の平均線から測定された表面プロファイル内の最も深い単一の谷の深さです。
Rt : 全体の粗さ
Rt は、評価長さ全体内の最も高い山と最も低い谷の間の垂直距離の合計です。
全体的な品質管理と、表面に極端な偏差がないことを確認するのに役立ちます。
Rmax: 最大粗さ深さ
Rmax は、評価長内の最大の山から谷までの高さです。個々のセグメント内の最大の山から谷までの差を調べ、それらのセグメントの最大値が選択されます。
Rmax は最も重要な局所的な粗さに焦点を当てており、重要なシールや接触面など、表面の特定の領域をより厳密に制御する必要がある用途に役立ちます。
RMS: 二乗平均平方根粗さ
RMS (Rq とも呼ばれます) は、評価長さにわたる平均線からの表面高さの偏差の二乗平均平方根平均です。 Ra よりも大きな偏差に重点を置き、精密工学や光学アプリケーションなど、大きな表面変動に敏感なアプリケーションに特に役立ちます。

ここで:Rq は RMS 粗さ値です。L は測定長さです。y(x) は垂直方向です。表面プロファイル上の点から平均線までの距離。
粗さ記号は、チェック マークとして使用できます。指定する表面上にあるマーク。追加の手順については、以下の表を参照してください。

実際には、原材料から特定の加工技術の選択、さらには工具の状態や加工パラメータなどの加工条件に至るまで、すべてが部品の表面の品質に大きな影響を与える可能性があります。加工材質が決まった場合、理想的な表面仕上げを得るには以下の点が考慮されます。

追加の処理やより滑らかな表面には追加コストがかかるため、エンジニアや設計者が不必要に厳しい粗さ要件を課さないことが重要であることに注意してください。可能な限り、粗さの仕様は主な製造プロセスの制限内で設定する必要があります。
前述の表面粗さの比較表に示されているように、CNC 加工では非常に広範囲の表面粗さを生成できます。では、どのような表面粗さがプロジェクトに最適なのでしょうか?調べてみましょう。
| おおよその表面粗さ換算表 | ||||
| 粗さグレード番号 | アメリカのシステム - Ra (μin) | アメリカのシステム - RMS (µin) | メートル法 - Ra (μm) | メートル法 - RMS (μm) |
| N12 | 2000年 | 2200 | 50 | 55 |
| N11 | 1000 | 1100 | 25 | 27.5 |
| N10 | 500 | 550 | 12.5 | 13.75 |
| N9 | 250 | 275 | 8.3 | 9.13 |
| N8 | 125 | 137.5 | 3.2 | 3.52 |
| N7 | 63 | 69.3 | 1.6 | 1.76 |
| N6 | 32 | 35.2 | 0.8 | 0.88 |
| N5 | 16 | 17.6 | 0.4 | 0.44 |
| N4 | 8 | 8.8 | 0.2 | 0.22 |
| N3 | 4 | 4.4 | 0.1 | 0.11 |
| N2 | 2 | 2.2 | 0.05 | 0.055 |
| N1 | 1 | 1.1 | 0.025 | 0.035 |
上の表では、粗さグレード番号 (N12、N11、N10 など) が ISO 1302 さまざまなレベルの表面粗さを示します。 CNC 加工の代表的な粗さグレードをいくつか示します。
Ra 3.2 μm (N8)
Ra3.2μmの表面仕上げは適度に滑らかな表面を示し、業務用機械の標準としてよく使用されています。この表面仕上げは、目に見えるものの過度の切断痕は残さず、ほとんどの消費者向け部品に許容され、多くの用途に十分に滑らかな表面を提供します。
Ra 1.6 μm (N7)
Ra 1.6 µm の表面仕上げは、切削痕がほとんど目立たない比較的滑らかな表面を表します。この仕上げは、ゆっくりと動く表面や軽度の耐荷重面に適しており、ポンプ部品や油圧コンポーネントに最適です。
Ra 0.8 μm (N6)
Ra 0.8 μm の表面仕上げは、非常に滑らかで精密な表面を意味します。これは、航空宇宙部品や自動車部品など、多くの精密工学アプリケーションの標準です。
Ra 0.4 μm (N5)
表面仕上げはRa0.4μmで鏡面に近い仕上がりです。このレベルの滑らかさを実現するには多大な労力が必要であり、それが最優先の場合にのみ要求する必要があります。光学部品、科学機器、その他の高精度用途に使用されます。
表面仕上げは製造に不可欠な要素であり、使用されるプロセスに直接影響されます。最終製品の機能性、美しさ、耐久性に大きな影響を与えます。ただし、表面粗さが低いほど必ずしも良いわけではないことに注意することが重要であり、実際の用途と予算を考慮する必要があります。
ワンストップ加工メーカーとして、 Chiggo は、厳格な表面仕上げ基準を達成するために幅広い製造プロセスと表面仕上げサービスを適用するだけでなく、特定のプロジェクトのニーズに合わせたコスト効率の高いソリューションを提供します。
重要なポイント:
お気に入りのコーヒーマグをキッチンの床に落とすことを想像してみてください。ここで、転倒後にスマートフォンの画面がクモの羽ばたき、または地震中の補強されていないコンクリートの壁がひび割れていることを想像してください。これらの日常の例は、警告なしに突然の破損につながる可能性のある物質的な特性であるBrittlenessを強調しています。安全性と信頼性のために重要な状態:建物、橋、または製品の脆い成分は、説明されていないと壊滅的に失敗する可能性があります。歴史は厳しいリマインダーを提供します。最も有名なRMSタイタニックは、極寒の大西洋の水域で脆くなり、曲げよりも衝撃に割れ、災害に貢献しています。エンジニアとデザイナーは、曲がったり引き伸ばされたりする延性材料とは異なり、脆いものがストレスの下でスナップする傾向があるため、脆性に細心の注意を払っています。 この投稿では、Brittlenessとは何か、それが硬度と靭性とどのように異なるかを探ります。また、ガラスや鋳鉄のような材料が脆弱である理由、およびエンジニアリングデザインでの脆性をテストおよび軽減する方法も説明しています。 brittlenessとは何ですか? 材料科学の脆性は、事前にプラスチックの変形をほとんどまたはまったくない材料の骨折する傾向を指します。簡単に言えば、脆い材料は曲がったり、伸びたりすることはありません。壊れます。もろい物体を曲げようとすると、プラスチックの変形を起こすのではなく、すぐにクラックまたはスナップします。これはその反対です延性、故障する前に、重大なプラスチック変形(たとえば、ワイヤーに引き込まれたり曲がったりする)を維持する材料の能力。非常に延性のある金属(銅や金など)は曲がったり、伸ばしたり、かなり引き出したりすることができますが、脆性材料(ガラスやセラミックなど)が小さな弾性ひずみだけの後に骨折します。 骨格と延性、靭性、硬さ 脆弱性と延性を比較すると、骨折前に粗末に材料がどれだけの材料を変形できるかにかかっています。脆性材料は非常に低い延性を持ち、小さなひずみでそのブレークポイントに達します。延性のあるものは、重大な塑性変形を維持できます。金属では、一般的な経験則は、休憩時の伸長〜5%がしばしば呼ばれることです脆い、一方、〜5%が考慮されます延性(材料およびテスト依存性、セラミックとガラスは通常1%をはるかに下回っています)。実際には、脆い材料はほとんど警告を与えません。彼らはスナップする前に目に見えて曲げたり首を曲げたりしません。にストレス - ひずみ曲線、延性材料は、収量と長いプラスチック領域を示しますが、脆性材料は、最小限の可塑性で突然の骨折までほぼ直線的に弾力性があります。 タフネス破壊前に材料が吸収するエネルギーを説明します(ストレス - ひずみ曲線の下の領域)。通常、材料が高強度と良好な延性を組み合わせると増加します。それは、脆性の厳格な「反対」ではありません。ゴム製のタイヤは、変形して衝撃を吸収するため、困難です。アニールされたガラスは、柔軟に変形できないため脆く、鋭い打撃はそれをひび割れさせることができます。 硬度別の概念です。これは、ひっかき傷や局所的なインデンテーションに対する抵抗です。素材は非常に硬いが脆弱な場合があります。たとえば、ダイヤモンドは引っ掻きに抵抗しますが、可塑性の欠如は、鋭い打撃の下でチップまたは切断することができます。逆に、比較的柔らかいもの(ゴムのような)は、変形する可能性があるため、衝撃に対する亀裂に抵抗する可能性があります。要するに、硬度は局所的な変形に対する耐性に関するものですが、脆性は骨折の挙動を説明しています。 脆性材料の例とそれらがどのように失敗するか 多くの日常的および産業材料は、脆い行動を示しています。ここにいくつかの例があり、それらがストレスの下でどのように失敗するかを示します。 ガラス:普通のガラス(窓ガラスや飲料ガラスなど)は、古典的な脆性素材です。圧縮は非常に硬くて強いですが、引張ストレスや衝撃の下では、柔軟に変形することはできません。硬い床にガラスを落とすと、通常は大きな鋭い破片に骨折します。故障は亀裂の伝播によるものです。小さな欠陥または衝撃点が亀裂を開始すると、プラスチックの変形がほとんどなくガラスを通り抜けます。この脆弱性はその構造に由来します。シリカネットワークは硬くてアモルファスであり、金属とは異なり、ストレスを和らげるモバイル脱臼はありません。興味深いことに、特別な治療法は、ガラスの壊れ(たとえば、表面圧縮応力を導入するために熱処理することによって生成される強化ガラス)を変えることができますが、まだ脆弱ですが、小さくて鈍いダイイスのようなピースに壊れる傾向があります(したがって「安全ガラス」)。フロントガラスで使用されるラミネートガラスは、2つのガラスのプライをプラスチックの中間層(通常はPVB)に結合するため、亀裂が形成されると、層状層がピースを一緒に保持します。これらの処理は故障モードを緩和しますが、根本的にガラスは曲げずに割れて失敗します。 セラミック:セラミックも同様に脆いです。セラミックの花瓶を棚からノックすると、へこみではなくチップまたは粉砕されます。構造的には、セラミックはイオン的および/または共有結合されており、しばしば多結晶です(磁器にもガラスの相が含まれています)。たとえば、磁器プレートでは、原子格子は剛性です。ストレスをかけると、原子面は簡単に滑ることができません。イオン固体では、小さなシフトが同様の充電イオンを並べてもたらし、強く反発し、亀裂が開始されます。転位運動は制限されており、結合は方向性があるため、セラミックは硬度と圧縮強度が高くなりますが、緊張や曲げの下でスナップする傾向があります。それらが故障すると、骨折表面は通常きれいになり、結晶面に沿ってファセットされます(切断)。容量を超えて装填されたセラミックタイルは、体を突破し、清潔でガラスのような骨折で壊れる亀裂が発生し、実質的に目に見える収量はありません。 鋳鉄(特に灰色の鋳鉄):鋳鉄は金属ですが、特定のグレードは脆いことがあることで有名です。古い鋳鉄製のエンジンブロックや鋳鉄パイプの亀裂を見たことがあるなら、脆性骨折を目撃したことがあります。灰色の鋳鉄(骨折表面の灰色にちなんで名付けられた)は、比較的高い炭素含有量を持っています。炭素は、鉄マトリックス全体に分布するグラファイトフレークを形成します。これらのフレークは内部亀裂と強いストレス濃縮器のように振る舞うので、金属は壊れる前にあまり伸びることはできません。その結果、鋳鉄は圧縮が非常に強い(均等にサポートされている場合)が、緊張や衝撃の下で突然故障する可能性があります。対照的に、延性(結節性)鉄は、グラファイトが誘導され、球状結節を形成する修正鋳鉄です(通常はマグネシウム処理を介して)。それははるかに脆く、粉砕するのではなく衝撃下で変形します。これについては、デザインセクションでさらに説明します。 コンクリート:コンクリートは固体で岩のように見えるかもしれません(そしてそれはそうです)が、それは脆い材料の別の例です。圧縮下では、コンクリートは非常に強く、非常に大きな負荷を運ぶことができます。ただし、緊張(引っ張ったり曲げたりする)では、単純なコンクリート亀裂が簡単に亀裂があります。セメントペーストとハードミネラル凝集体の混合は、粗末な流れる能力を備えた剛性マトリックスを形成するため、小さな張力株は微小亀裂を開いてすぐに合体します。そのため、鉄筋コンクリートが非常に一般的です。鋼鉄の鉄筋は、張力を運ぶように埋め込まれ、延性(および靭性)を加えるように埋め込まれています。鋼は、セクションを一緒に保持し、突然の脆性崩壊よりも警告を保持し、警告を提供し、徐々に拡大します。 その他の脆い材料:他にも多くの例があります。高炭素または高度に硬化したツール鋼は、和らげないと脆くなる可能性があります。より高い炭素と硬度が延性を低下させるため、曲がったときにファイルまたは非常に硬いナイフブレードがスナップする場合があります。鉛筆の「鉛」のように、グラファイトは脆弱です。その層状構造により、平面がスライドしてマークを残すことができますが、スティックは控えめな力の下で簡単に壊れます。一部のポリマーも脆いです。ポリスチレン(使い捨てのカトラリーや古いCDのケースで使用される剛性プラスチック)は、曲がるのではなくスナップする傾向があります。 なぜいくつかの材料が脆弱なのですか? 脆性を理解するために、マイクロスケールと原子スケールの材料内で何が起こるかを見るのに役立ちます。材料は原子結合と微細構造が異なり、これらの違いはストレスへの反応を決定します。 結晶金属では、非局在化された金属結合とモバイル脱臼は通常、プラスチックの流れを可能にします。スリップが簡単な場合、ストレスの再分配と亀裂のヒントが鈍化します。結合が非常に方向性がある場合、またはクリスタルが動作可能なスリップシステムをほとんど提供していない場合、可塑性は制限されています。亀裂が核形成して伝播するまでストレスが集中します。 次に、微細構造がその亀裂がどのように成長するかを決定します。鋭い包含物、硬い第2フェーズ、毛穴、または弱いインターフェイスは、亀裂の発射サイトと経路として機能します。温度とひずみ速度も重要です。温度の低下またはひずみ速度が高いと、可塑性が削減され、脆性骨折に向かって挙動が押し上げられます。環境はバランスを傾ける可能性があります。原子の水素は亀裂を加速しますが、穀物結合の分解(例えば、顆粒間腐食や不純物の分離など)は境界に沿った凝集を減らします。 簡単に言えば、プラスチックの宿泊施設が希少で亀裂運転部隊が支配しているときに、脆性が現れます。材料が脱臼を自由に動かしたり、亀裂先端でエネルギーを消散させたりできない場合、故障は突然であり、ほとんど警告を与えません。 脆性を測定またはテストする方法は? Brittlenessは、ストレス下での材料の挙動に関するものであるため(変形がほとんどなく破壊)、密度や融点のように調べることができる単一の「Brittleness Number」はありません。代わりに、エンジニアは、延性、骨折の靭性、衝撃エネルギーのテストを使用して間接的に特徴づけています。 脆性挙動を測定する標準的な方法の1つは、引張試験です。ストレスと緊張が記録されている間に犬の骨標本が引っ張られ、ストレス - ひずみ曲線が生成されます。脆性応答は、低い領域では、ほとんどまたはまったく降伏領域を持つ、突然の骨折へのほぼ線形の弾性経路です。 2つのクイックインジケーター - 破損時のエリアと面積の削減 - は、延性の尺度です(そして、brittle性を反比例させます)。脆い材料は、低い伸長と面積の最小限の減少を示します(ネッキングはほとんどまたはまったくありません)。金属の場合、テストのセットアップとレポートはASTM E8に従います。 Charpy V-Notch Impact Testでは、振り子が揺れ動く棒が打たれ、振り子エネルギーの損失(スイング高さの変化による)がジュールの吸収エネルギーとして記録されます(j)。低吸収エネルギーは、脆性反応を示します。高エネルギーは靭性を示します。結果は標本のサイズとノッチのジオメトリに依存するため、シャルピーエネルギーは、基本的な材料定数としてではなく、比較と温度研究に最適です。複数の温度でテストを実行すると、延性から脆性の遷移がマッピングされます。エンジニアは骨折の表面も読みます。明るい、ファセット/切断の特徴は脆性骨折を示唆していますが、鈍い繊維状の外観は延性があることを示します。 もう1つの重要な尺度は、平面鎖骨折の靭性です(kIC)、亀裂の成長に対する材料の抵抗を定量化する骨折 - 機械的パラメーター。これは、事前に砕いた試験片の精度テストから決定され、亀裂が伸び始めた臨界応力強度係数を表します。脆性材料は低いkですICしたがって、欠陥の耐性が低いため、極端な亀裂は比較的低いストレスで故障を引き起こす可能性がありますが、丈夫で延性のある材料はkが高いですIC亀裂を鈍らせたり逮捕したりできます。エンジニアは、骨折データを使用して、許容される欠陥のサイズを設定し、突然の骨折に対して設計します。 デザインの脆性障害を防ぐ方法 脆性性は突然の壊滅的な失敗につながる可能性があるため、エンジニアはそれに対処するための戦略を開発しました - 異なる材料を選択するか、材料と設計を変更して脆性行動を危険にさせることにより。 材料の選択と治療 脆性の故障を避ける最も簡単な方法は、緊張、曲げ、または衝撃の部品に対してより延性のある材料を選択することです。構造設計者は、しばしば、壊れる前に屈服して曲がる鋼またはアルミニウム合金を好みます。高い硬度、高温能力、または特定の電気挙動などの特性が必要な場合(本質的に脆性オプション(技術セラミック、ディスプレイガラスなど)を指定する必要があります。鋼では、消費されている高炭素微細構造は非常に硬いが脆い。強化は、タフネスの大きな利益と少し硬く取引します。鋳鉄は別のケースを提供します。灰色の鉄はフレークグラファイトのために脆い。少量のMgまたはCEを追加すると、紡錘体グラファイトを備えた延性(結節性)鉄が生成され、ストレス濃度が低下し、延性と耐衝撃性が著しく改善されます。 複合材料 脆性マトリックスとより延性のある相を組み合わせると、靭性が高まります。鉄筋コンクリートのペアコンクリート(脆性)で鋼鉄鉄筋(延性)を備えているため、セクションが緊張を運び、突然の崩壊を避けることができます。同様に、繊維強化ポリマーとセラミックマトリックスコンポジット埋め込みガラス、炭素、またはアラミド繊維を埋め込む亀裂、偏向、引き抜き、亀裂の成長に必要なエネルギーを増加させます(骨折の靭性が高くなります)。 ジオメトリと安全因子を設計します 鋭い角とノッチを避けることにより、ストレス濃縮器を減らします。寛大なフィレットを使用してください。荷重が最も高い厚さまたはrib骨を追加します。薄いガラスシートは、厚いペインよりもはるかに簡単に壊れます。セラミックとガラスの場合、表面圧縮を誘導する(たとえば、焼き戻し)は、亀裂を開始するためにより高い引張応力を必要とすることにより、明らかな靭性を高めます。脆性部品はほとんど警告を与えないため、設計者はより高い安全因子を使用し、定期的な検査をスケジュールします。たとえば、航空宇宙では、脆弱な方法で動作できるコンポーネントは、X線または超音波で内部亀裂をチェックします。 環境制御 温度と環境は、材料がどのように変形し、骨折するかを変えます。低温で合金が脆くなった場合は、最小サービス温度を設定するか、寒冷気候のために延性から脆性への移行温度が低いグレードを選択します。同様に、水素のピックアップがリスク(高強度鋼の水素包含)である場合、充電を最小限に抑える予防コーティングとプロセスを使用し、吸収された水素を追い出すためにベイクアウト(熱排除)を実行します。 […]
アルミニウムは、さまざまな産業でさまざまな目的で一般的に使用される非鉄金属です。航空機の部品から複雑な家庭用電化製品に至るまで、アルミニウムの多用途性は比類のありません。そのユニークな特性と適応性により、軽量で耐久性があり、精密に設計されたコンポーネントを製造するための CNC 加工におけるトップの選択肢となっています。
CNC 加工の一種である CNC フライス加工は、多点フライス カッター ツールによる高い切断効率と精度により、製造業で一般的に使用されています。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español