ポリアミドは、アミド結合を含むすべてのポリマーの一般的な用語です。ナイロンはもともと、産業用および消費者用途向けに開発された合成ポリアミドPA6およびPA66のデュポンの商標でした。ナイロンはポリアミドのサブセットですが、2つの用語は完全に交換可能ではありません。この記事では、ポリアミドとナイロンの関係を調査し、それらの重要な特性とパフォーマンスの詳細な比較を提供します。
ポリアミド(PA)は、繰り返し単位がアミド(-CO-NH-)結合によってリンクされている高分子量ポリマーのクラスです。ポリアミドは自然または合成のいずれかです。天然のポリアミドには、羊毛、絹、コラーゲン、ケラチンが含まれます。合成ポリアミドは、3つのカテゴリに分類できます。
脂肪族ポリアミド(PA6、PA66、PA11、PA12):一般工学にぴったりです。それらは、強度、靭性、耐摩耗性、および簡単な処理のバランスを妥当なコストでバランスさせます。
芳香族ポリアミド(Kevlar®やNomex®などのアラミド):極端なパフォーマンスに最適です。 Kevlar®のようなパラアミッドは、例外的な引張強度と耐抵抗を提供しますが、Nomex®のようなメタアラミッドは、固有の火炎耐性と熱安定性に充てられています。それらは高価であり、溶融処理できないため、一部の形状と製造ルートはより制限されています。
半芳香族ポリアミド(PPA、PA6T、PA6/12T):高温エンジニアリングを対象としています。それらは、高温の剛性と寸法を維持し、多くの自動車液をうまく処理します。それらは溶融処理(注入/押し出し)を処理することができますが、より高い溶融温度で動作し、慎重に乾燥する必要があります。脂肪族PAとアラミッドの間にはコストがかかります。
それらは、分子鎖間の水素結合による結晶性、良好な熱耐性と耐薬品性、および水分吸収の傾向を高めていますが、これらの特性の程度はタイプによって大きく異なります。それらの機械的特性(引張強度、弾性弾性率、破壊時の伸び)は、鎖の剛性と結晶性に密接に結び付けられています。これらは高いほど、材料が硬くて強くなりますが、より脆弱です。値が低いと、より柔らかく、より丈夫な素材が生じます。
以下は、最も一般的な合成ポリアミドグレード、それらの重要な特性、および典型的なアプリケーションの概要です。
学年 | 一般名 | モノマー | 炭素数 | 重合 | 引張強度(MPA) | 弾性率(GPA) | 融解温度(°C) | HDT(°C、乾燥、1.8 MPa) | 水分吸収(%) @50%RH | 耐薬品性 |
PA6 | ナイロン6(合成) | Caprolactam(ε-Caprolactam) | 6 | リングオープン重合 | 60–75 | 1.6–2.5 | 220–225 | 65–75 | 2.4–3.2(〜9–11%飽和) | 優れたオイル/燃料抵抗;強酸/塩基に敏感 |
PA66 | ナイロン6,6 | ヘキサメチレンジアミン +アディピン酸 | 6+6 | 凝縮重合 | 70–85 | 2.5–3.0 | 255–265 | 75–85 | 2.5–3.5(〜8–9%飽和) | PA6と同様に、わずかに優れた溶媒耐性 |
PA11 | バイオベースのポリアミド | 11-アミナウンドカノ酸 | 11 | 自己凝縮 | 50–65 | 1.2–1.8 | 185–190 | 55–65 | 1.5–2.0 | 優れた耐薬品性、塩スプレー、耐性耐性 |
PA12 | 長鎖ポリアミド | ラウリル・ラクタム | 12 | リングオープン重合 | 45–55 | 1.6–1.8 | 178–180 | 50–60 | 0.5–1.0 | PA11に似ています。優れた耐薬品性 |
PA46 | 高テンプポリアミド | テトラメチレンジアミン +アディピン酸 | 4+6 | 凝縮重合 | 80–100 | 3.0–3.5 | 〜295 | 160–170 | 2.0–3.0(飽和すると高く) | 優れた高テンプル、オイル、耐摩耗性 |
ケブラー | パラアミッド | P-フェニレンジアミン +テレフタロイル塩化物 | - | 凝縮重合 | 3000-3600 | 70–130 | 融解なし; 500°Cを超える分解 | 最大300°Cまでのプロパティを保持します。 500°Cを超える分解 | 3–7(水分回復 @65%RH) | ほとんどの化学物質に耐性があります。 UV敏感 |
簡単なハンズオンテストでポリアミドをすばやくスクリーニングします - 火傷テストで始まります(溶けてから黄色で傾けた青色の炎で燃やし、セロリのような臭いを放ち、硬い黒いビーズを残します)またはホットニードルテスト(同じ匂いできれいに柔らかくなります)。 PA6/PA66(密度≈1.13–1.15 g/cm³)は水に沈み、PA11/PA12(≈1.01–1.03 g/cm³)のような長鎖グレードは水または希釈アルコールに浮かぶ可能性があることに注意してください。決定的なラボIDの場合、FTIR分光法を使用して、特徴的なN – Hストレッチ(〜3300cm⁻¹)およびC = Oストレッチ(〜1630cm⁻¹)を検出し、DSCを使用して融点(PA12≈178°C、PA6≈215°C、PA66≈260°C)を確認します。
ナイロンは合成ポリアミドの最も有名なサブセットです。実際には、人々がプラスチックやテキスタイルで「ポリアミド」と言うとき、彼らはほとんど常にナイロン型材料を指しています。
最も広く使用されているコマーシャルナイロン - ナイロン6、ナイロン6/6、ナイロン11、およびナイロン12などは、脂肪族ポリアミドです。それらの半結晶性微細構造と強力な水素結合により、一般工学の強度、靭性、耐摩耗性、良好な熱と耐薬品性の優れた組み合わせが得られます。多目的で信頼できる、それらは広範囲の従来の製造および添加剤技術を通じて処理することができ、それらをの家族の長年の主食にすることができますエンジニアリングプラスチック。
全体として、ナイロンとポリアミドを識別するために使用される方法は、フィールドとラボでの両方で、本質的に同じです。主な違いは、ナイロングレードが正確な区別のためにより正確な基準を必要とすることです。実験室の設定では、融点を測定し、特定のグレードを特定するために、微分スキャン熱量測定(DSC)が一般的に使用されます。密度テストは、ショートチェーンナイロン(PA6/PA66)から長鎖ナイロン(PA11/PA12)を分離するための簡単な方法を提供します。さらなる確認が必要な場合、X線回折(XRD)や溶融流量(MFR)分析などの手法を適用して、6シリーズと11/12シリーズの材料をより正確に区別できます。
「ポリアミド」と「ナイロン」は、しばしば同じ意味で使用されますが、ナイロンはポリアミドの1つのタイプにすぎません。このセクションでは、それらの共通のプロパティについて詳しく説明します。
ポリアミドは、バックボーンでアミド(-CO-NH-)結合を繰り返すことで特徴付けられますが、多くのモノマーから合成できます。脂肪族ポリアミドは、ε-カプロラクタム、ヘキサメチレンジアミンを加えたヘキサメチレンジアミン、または11-アミナウンドカノ酸などの直線鎖ユニットから構築されていますが、芳香族アラミッドは硬いベンゼンリングを連鎖に取り入れています。モノマーと重合法の選択により、鎖の柔軟性、結晶化度、水素結合密度が決定されます。これは、機械的強度、熱安定性、油、燃料、および多くの化学物質に対する耐性に影響を与える要因です。
ナイロンは、狭いモノマーセットから作られた脂肪族ポリアミドのサブセットです。一般的なナイロングレードには、ヘキサメチレンジアミンにアディピン酸を凝縮することにより生成されるPA6とPA6,6が含まれます。それらの均一なチェーンセグメントと強力な水素結合は、引張強度、靭性、耐摩耗性、および中程度の耐熱性のバランスの取れた混合をもたらす半結晶ネットワークを作成します。
ポリアミド(ナイロンを含む)の融点は、モノマーの化学構造、結晶性の程度、水素結合密度、鎖の柔軟性の4つの主な要因によって決定されます。一般に、より多くの定期的に間隔を置いた水素結合とより高い結晶性が融解温度を上昇させます。逆に、結晶の形成を破壊する柔軟なチェーンセグメントが融点を低下させます。たとえば、PA11やPA12などの長鎖、低結晶性ポリアミドは178〜180°C前後に溶け、PA6やPA6/6のような一般的なナイロンは、約215°Cと265°Cの間で溶融し、ケブラーなどの硬質アロマティックポリアミドは500°Cを超えて溶けません。
一般に、ナイロンは強度と靭性のバランスの取れた組み合わせを提供し、他のポリアミドはより広範なパフォーマンスチューニングを提供します。高強度の端で、Kevlar®などの芳香族アラミッドは、最大3.6 GPa(〜3600 MPa)までの繊維引張強度を達成し、弾道衝撃下でのエネルギー吸収に優れています。反対側では、PA11やPA12のような長鎖脂肪族ポリアミドは、優れた延性と高い衝撃耐性のために引張強度(〜45〜60 MPa)を交換します。一般的なナイロン(PA6およびPA6,6)は真ん中に真っ直ぐに横たわっており、約60〜85 MPaの乾燥した引張強度とバランスの取れた耐衝撃性を提供し、耐荷重く衝撃耐性成形部品に人気のある選択肢となっています。
ポリアミドファミリー全体は、良好な耐摩耗性を提供します。 Kevlar®などの芳香族ポリアミドは、非常に高い表面の硬度と弾性率を、卓越した摩耗とカット抵抗と組み合わせます。一般的なナイロン(PA6およびPA6,6)は、中程度の硬度ですが、摩擦係数が低く(≈0.2–0.3)、乾燥条件と潤滑条件の両方で優れた耐摩耗性を与えます。長鎖脂肪族ポリアミド(PA11およびPA12)は、より柔らかく、より柔軟な鎖セグメントを持ち、PA6/PA6,6よりも硬度と耐摩耗性をわずかに低くします。ただし、それらの高いタフネスにより、低負荷の高いインパクトアプリケーションで優れた摩耗性能を維持することができます。
ポリアミドの耐衝撃性は、大きく鎖の柔軟性、ガラス遷移温度(TG)、および水分の取り込みに大きく依存します。 PA11やPA12などの長鎖グレードは、柔軟なバックボーンと低TGのおかげで、低温でも優れたタフネスを提供します。一般的なナイロン(PA6およびPA6,6)は、バランスの取れた衝撃強度を提供します。これは、水がTgを下げる可塑剤として機能するため、中程度の水分吸収によってさらに改善されます。 Kevlar®などの芳香族ポリアミドは、非常に強力ですが、繊維ではなくバルクまたは複合型で使用する場合、横または高ストレインレートの影響で硬くなり、寛容になります。
化学耐性は、異なるポリアミド間で大きく異なります。一般的なナイロン(PA6およびPA6/6)は、光炭化水素、オイル、およびほとんどの非極性溶媒に対する良好な障壁を提供しますが、強酸、強い塩基、または硝酸、ブリーチ、クロロ化溶媒などの酸化剤にさらされると、加水分解または分解を起こしやすくなります。長鎖脂肪族ポリアミド(PA11およびPA12)は、石油、燃料、多くの有機溶媒、オイルに抵抗することができ、燃料ライン、燃料タンク成分、ギア、およびスライド部品に好ましい選択肢となります。
芳香族ポリアミド(ケブラー、ノメックスなど)は、実質的にすべての一般的な溶媒と燃料に対して非常に耐性があります。ただし、高温、長期にわたる浸漬、または動的摩耗により、ポリアミド内のマイクロボイドと水素結合ネットワークが化学的侵入の影響を受けやすくなり、性能の低下につながります。
23°Cおよび50%RHでは、典型的なナイロン(PA6およびPA6/6)の水分吸収速度は約2〜3%であり、長鎖ポリアミド(PA11およびPA12)は約0.5-1%のみを吸収し、芳香族ポリアミドはさらに少なくなります。湿気の取り込みは材料をわずかに塑性化し、靭性を高め、脆性骨折のリスクを減らします。光学または隠蔽アプリケーションでは、水分補給はナイロンの屈折指数を水の屈折率に近づけ、「不可視」を強化します。これは、ナイロン釣り線の背後にある原則です。
ただし、湿気の吸収は、寸法の腫れを引き起こし、剛性と強度を低下させ、場合によっては加水分解により、最終的に材料のサービス寿命を短縮する可能性があります。
ポリアミドとナイロンは、並外れた機械的強度、熱安定性、および化学耐性を提供するため、優れた3D印刷材料です。これらのポリマーは、幅広い添加剤製造プロセス、リサイクル可能な、および汎用性の高いポストプロセッシングをサポートすることとも互換性があります。ここでは、最も一般的な3Dプリントナイロンおよびポリアミド材料とその用途があります。
3D印刷で最も一般的なポリアミドの1つであるPA12は、水分吸収が低く(〜0.5〜1.0%)、高次元精度、脂肪族炭化水素(燃料、オイル)、多くのアルコール、希釈アルカリに対する優れた耐性を提供します。さらに、他のナイロンパウダーと比較して、耐性耐性と疲労寿命がより良くなります。
PA12は、剛性、寸法の安定性、および細かいテクスチャの表面仕上げを改善するために、約40重量%のガラスビーズで補強されています。
PA12 GBと同様ですが、刻んだガラス繊維(〜35〜40 wt%)で補強されているPA12 GFは、剛性と引張強度が大幅に高くなりますが、通常、歪みの傾向が高く、脆性骨折挙動が増加します。
FDMグレードのナイロンは、最も強力で最も衝撃的な一般的なFDM材料の1つと考えられています。優れた摩耗と耐熱性を提供しますが、水分吸収が高い(〜2〜3%)と収縮により、PA12と比較して反りがちです。
PA11はバイオベースのナイロンであり、優れた柔軟性、影響耐性、環境安定性を提供します。
高熱または電子環境で使用するために、三酸化モリブデンまたは三亜水和物のような炎症者の充填剤を追加した修正PA11。
ポリアミドは、アミド連鎖を備えたすべてのポリマーの傘の用語であり、ナイロンは最もよく知られており、広く使用されている合成バリアントです。並外れた強度、柔軟性、耐薬品性、および設計用途性のおかげで、これらの材料は3Dプリントの世界で傑出した選択となっています。 PA12を精密ハウジング用に、耐衝撃性のあるバイオベースの部品用PA11、または構造用途向けのガラス強化バリアントを使用して作業している場合でも、これらの材料は、航空宇宙や自動車から医療および家電まで、業界全体で新しい可能性を解き放ち続けています。
添加剤の製造、材料の選択、生産グレードの品質管理に関する深い専門知識により、チグゴはあなたのアイデアを高性能で既製の実装ソリューションに変えることに取り組んでいます。お問い合わせそして、あなたのプロジェクトの次の一歩を踏み出してください!
「PA」はPA6またはPA12で何を表していますか?
「PA」はポリアミドの略です。数は、使用されるモノマーの炭素原子の数を示しています。たとえば、PA6はカプロラクタム(6炭素)、ラウリルラクタム(12炭素)からのPA12から来ています。
ポリアミドは身に着けていますか?
はい、ポリアミドは一般に、衣服や織物で使用する場合、ほとんどの人にとっては安全で健康であると考えられています。それは、その軽量、伸縮性、耐久性のある性質のために、アクティブウェア、下着、靴下、水着、アウターウェアで広く使用されています。
日常の家庭用品から高性能産業コンポーネントまで、プラスチック製造は私たちの周りの世界を形作ることに大きく貢献しています。これらのコンポーネントの多様な形状と機能は、射出成形、プラスチック押出、3D印刷など、さまざまな製造プロセスを使用して生成されます。プラスチック部品の生産におけるこれらの方法を区別するものと、プロジェクトに最適なもの(または組み合わせ)がどのようなものですか?予算、部品設計、プラスチック材料、および生産量は、プラスチック製造方法を選択する際に作用する要因のほんの一部です。この記事では、11の一般的なプラスチック製造方法を紹介し、それらがどのように機能するか、利点、制限、典型的なアプリケーションを説明します。
究極の引張強度(UTS)は、材料が壊れる前に耐えることができる最大応力の尺度です。 UTSは通常、引張テストを実行し、エンジニアリングストレス対ひずみ曲線を記録することによって見つかります。集中的な特性として、UTSは緊張下の材料の性能を比較するために不可欠です。エンジニアが、故障せずに引張荷重に抵抗する必要がある構造とコンポーネントの適切な材料を選択するのに役立ちます。
小型エレクトロニクスから頑丈な産業システムに至るまで、ほぼすべてのハードウェアが効果的に機能するために機械的ファスナーに依存しています。この記事では、ファスナーとその幅広い用途について詳しく説明します。詳しく見てみる準備はできましたか?以下のことを明らかにしていきましょう。 ファスナーとは何ですか? さまざまなタイプの留め具とその用途 ファスナーの製造に使用される材料 プロジェクトに適したファスナーを選択する方法 ファスナーとは何ですか? ファスナーは、2 つ以上のオブジェクトを機械的に結合または固定するために使用されるハードウェア デバイスです。これには、ねじ、ナット、ボルト、ワッシャー、リベット、アンカー、釘など、さまざまな種類の工具が含まれます。 ほとんどの留め具は、ネジやボルトなどのコンポーネントを損傷することなく、簡単に分解して再組み立てできます。それらは非永久的な関節を形成しますが、これは関節が弱いことを意味するものではありません。実際、正しく取り付けられていれば、かなりのストレスに耐えることができます。 さらに、溶接ジョイントやリベットなどの留め具があり、簡単に分解できない永久的な結合を形成します。用途に応じて、ファスナーにはさまざまな形状、サイズ、素材があり、それぞれに独自の機能と実用性があります。これらについては、次の文章でさらに詳しく見ていきます。 さまざまな種類のファスナーとその用途 上で述べたように、ファスナーにはさまざまな形式があります。各タイプは、そのデザインと機能に基づいて独自の用途を実現します。以下は、ファスナーの主なタイプ、そのサブタイプ、および特定の用途の詳細な内訳です。 タイプ 1: ネジ ネジは非常に汎用性の高いファスナーで、強力なグリップ力と引き抜き力に対する耐性を提供するヘッドとネジ付きシャンクを備えています。平型、丸型、六角型など、さまざまなヘッド形状が用意されており、さまざまなツールや美的ニーズに対応できます。 ボルトとは異なり、セルフタッピンねじなどの多くのねじは、事前に穴を開ける必要がなく、材料に独自のねじ山を作成できます。ドライバーや電動ドリルなどの簡単な工具を使用して簡単に取り付けることができ、締め付けにナットは必要ありません。ネジは木材、プラスチック、薄い金属など幅広い材質に対応します。最も一般的なものには次のようなものがあります。 木ネジ 名前が示すように、木ねじは通常、部分的にねじ山が切ってあり、木材を接合するために特別に設計されています。鋭利な先端と粗いねじ山を備えているため、木材に容易に浸透し、確実なグリップを提供します。 小ねじ これらのネジは木ネジに比べてネジ山が細いため、金属や硬質複合材料などの硬い材料に適しています。先端が先細りになることなく、一定のシャンク径を備えています。通常、小ねじは、事前に開けられたねじ穴に挿入されるか、ナットと組み合わせて確実に組み立てられます。 板金ねじ 板金ネジは セルフタッピングネジ 薄い金属シート (板金など) およびその他の薄い材料用に特別に設計されています。全ねじ付きシャンクと鋭利なねじ付き先端を備えているため、薄い金属にねじを簡単に切断できます。 セルフドリルねじ セルフドリルねじは、板金ねじの全ねじ設計を共有していますが、ドリルビットの形をした先端が付いています。この独特の機能により、事前に穴を開ける必要がなく、スチールやアルミニウムなどの硬い基材に直接穴を開けることができます。これらは、より厚い金属材料を固定するのに特に効果的であり、より高い効率と取り付けの容易さを提供します。 デッキネジ 主に屋内または保護された木材の接続に使用される木ネジとは異なり、デッキネジは屋外用途向けに特別に設計された木ネジです。これらは通常、ステンレス鋼、亜鉛メッキ鋼、または特別な防食コーティングが施された材料で作られています。デッキスクリューは通常、全ねじシャンクを備えていますが、温度や湿度の変動による膨張、収縮、応力に対応するために、二条ねじや特殊なねじ山を組み込んだ設計もあります。 六角ラグねじ 六角ラグネジは、ドライバーではなくレンチまたはソケットで締められるように設計された大きな木ネジです。太くて粗いねじ山と六角形の頭部を備えたこのねじは、優れたトルクを提供し、金属や木材に対して最も強力な締結具の 1 つです。これらのネジは、そのサイズと強度のため、事前に下穴をあけておく必要があります。重い荷重に耐えられるため、フレーム、デッキ、重い家具などの構造用途に最適です。 タイプ 2: ボルト ボルトはねじと同様の構造をしており、先端から雄ねじが切られているのが特徴です。ねじとは異なり、ボルトは自動ねじ切りではなく、材料にねじ山を切り込みません。代わりに、事前にタップされた穴またはナットと連携して、強力な機械的接合を作成します。最も一般的なボルトのタイプは次のとおりです。 六角ボルト 六角ボルトは頭が六角形です。この設計により、標準のレンチや電動工具を使用して簡単に締めたり緩めたりできるため、効率的な組み立てと分解が保証されます。ボルトの長さに沿って完全にまたは部分的に延びる機械ねじが付いています。全ねじボルトは強いクランプ力を必要とする用途に優れており、半ねじボルトは滑らかなシャンク部分を備えているため、横方向の荷重に耐える用途に優れたせん断強度を発揮します。 キャリッジボルト キャリッジ ボルトには、丸い凸状の金属ヘッドがあり、その後に四角い首とネジ付きシャフトが付いています。スクエアネックは材料内の所定の位置にロックするように設計されており、取り付け中にボルトが回転するのを防ぎ、安定性を確保します。これらのボルトは、主に木材フレームや家具の組み立てなどの木材用途に使用されます。 アイボルト アイボルトは、一端に円形のループ (または「アイ」) があり、もう一端にねじ付きシャンクが付いています。ねじ端は表面にねじ込まれ、ループにより物体の接続や吊り下げが簡単に行えます。これらのボルトは、重い荷物を持ち上げたり、ロープやケーブルを構造物に固定したりするなど、張力が必要な用途によく使用されます。 ソケットヘッドボルト(六角ボルト) これらのタイプの締結具は通常、打ち込みツール用の六角形の凹部を備えた円筒形の頭部を備えています。締め付けには六角レンチや六角穴付き工具を使用します。外部ドライブヘッドを備えた六角ボルトなどの従来のボルトと比較して、ソケットヘッドボルトは頭部が小さく、よりコンパクトです。この設計により、狭いスペースや限られたスペースでの高トルクの適用が可能になります。 Uボルト U ボルトは、シャンクの両端にネジが付いている「U」のような形をしています。パイプやその他の円筒形の物体に巻き付けて、パイプに永久的な損傷を与えたり、流体の流れに影響を与えたりすることなく、平らな面や構造物に固定できます。 両頭ボルト […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español