インダストリー 4.0 の時代を迎え、CNC (コンピューター数値制御) 加工は、現代のものづくりの基礎。コンピューターを使用して工作機械を制御するこの技術は、高精度、高効率、一貫性により従来の機械加工に革命をもたらしました。しかし、より複雑で精密なコンポーネントへの需要が高まるにつれ、従来の 3 軸または 4 軸 CNC 加工では対応できないことがよくあります。
ここで 5 軸 CNC 加工が登場します。 5 軸 CNC 機械では、従来の 3 つの直線軸に 2 つの回転軸を追加することで、ほぼあらゆる方向からツールがワークピースにアプローチできるようになります。この機能により、追加のセットアップの必要性が大幅に排除され、生産効率が向上し、美しく複雑な部品が生産されるため、あらゆるワークショップに信じられないほどの可能性が解き放たれます。
この記事では、5 軸 CNC 加工とは何かを明確にし、その仕組みを説明し、5 軸の動作を詳細に掘り下げ、その利点と制限を共有することに重点を置きます。
5 軸 CNC 加工をより深く理解するために、まず CNC 加工における軸数について説明しましょう。軸数とは、目的の製品を作成するために切削工具 (またはワークテーブル) が移動できる方向の数を指します。基本的に、機械が持つ軸の数が増えるほど、ツールと作業台の移動と回転の範囲が広くなり、最終的にはより複雑で正確なコンポーネントの製造が可能になります。
5 軸 CNC 加工では、5 つの異なる軸に沿って切削工具または部品を同時に動かします。 X、Y、Z 直線軸に沿って移動する従来の 3 軸加工とは異なり、5 軸 CNC 機械には 2 つの追加の回転軸が組み込まれています。これにより、1 回のセットアップで複数のサーフェスを処理できるようになります。複雑な曲線や輪郭を簡単に処理でき、複雑で不規則な形状の部品の加工に最適です。
それでは、5 軸 CNC 加工の軸の知識から始めましょう。
標準の 3 軸加工は、X、Y、Z 軸に沿って行われます。これら 3 つの直線軸は、スピンドルまたはワークピースが移動できる方向を表します。
回転軸を使用するということは、機械が事前に確立された直線軸の 1 つの周りで部品または切削工具 (スピンドル ヘッド) を回転できることを意味します。 5 軸 CNC 加工では、さまざまな機械が次の回転軸 (A と B、B と C、または A と C) のさまざまな組み合わせを使用します。
5 軸 CNC 加工は、切削工具またはワークピースを 5 つの異なる軸に沿って同時に移動させることによって動作します。 3 つの直線軸と 2 つの回転軸が連動して必要な加工を実現します。
ここでは、5 軸 CNC 加工がどのように機能するかを段階的に説明します。
最初のステップでは、CAD (コンピューター支援設計) ソフトウェアを使用して、機械加工する部品を設計します。設計者は、必要な寸法、形状、機能をすべて指定して部品の 3D モデルを作成します。
部品が設計されると、CAM (コンピューター支援製造) ソフトウェアを使用して 3D モデルが機械可読命令に変換されます。これには、ツールパスの定義、適切な切削工具の選択、切削速度や送りなどの加工パラメータの決定が含まれます。
5 軸 CNC 機械は部品の要件に基づいて選択されます。ワークピースを確実に保持して位置合わせするための治具が設計され、ワークテーブルに取り付けられています。切削工具は、材質、希望する表面仕上げ、部品の複雑さに基づいて選択され、ツールチェンジャーに取り付けられます。
CAM で生成されたプログラムを CNC マシンの制御システムにロードします。このプログラムには、機械が加工操作を実行するために必要なすべての命令が含まれています。
マシンの電源がオンになると、プログラムが開始されます。また、CNC システムは、事前定義されたツールパスに沿ってツールの動きを制御します。 3 つの直線運動は、従来の 3 軸加工と同じです。左右 (X 軸)、前後 (Y 軸)、および上下 (Z 軸) です。回転と傾きの同時動作については、前述したように以下の 3 つの組み合わせがあります。
1. A と B2 の回転動作。 AとC3の回転動作。 B&Cの回転動作
これらの軸の具体的な構成は、5 軸 CNC 機械の種類によって異なります。下の図は、A と B、A&C、B&C の回転モーションを示しています。
オペレーターは加工プロセスを監視し、すべてがスムーズに進んでいることを確認します。必要に応じて、切削パラメータまたはツールパスを調整して、加工プロセスを最適化できます。
需要が増え続けるにつれて、現在ではさまざまな種類の 5 軸加工機が登場しています。 2 つの回転軸の構成に基づいて、5 軸フライス センタは、テーブル/テーブル、ヘッド/テーブル、またはヘッド/ヘッドの 3 つの主要なタイプのいずれかに分類できます。
このセットアップでは、両方の回転軸がワークテーブルに取り付けられています。これは、ワークピースがテーブル上に固定され、テーブルが回転および傾斜して 5 軸運動を実現することを意味します。他のタイプと比較して、テーブル-テーブル構成は構造がシンプルで保守が容易で、作業範囲が最小限に抑えられます。中・小型ワーク、特に形状が複雑でサイズが小さいワークの加工に威力を発揮します。ただし、可搬質量に限界があるため、大きなワークや重いワークには不向きです。
ヘッド/ヘッド マシンはスピンドル ヘッドを使用してすべての回転および旋回運動を実行しますが、ワークピース自体は静止したままです。この設定により、主軸頭とワークとの干渉を回避し、ワークの移動による誤差を低減します。ヘッド/ヘッド型 CNC マシンは大型部品の製造に最適です。ただし、この設計では回転軸方向の可動範囲が制限されます。主軸ヘッドはさまざまな角度で回転したり傾けたりできますが、回転軸の可動範囲は比較的狭いため、特定の複雑な加工シナリオでは制限要因となる可能性があります。
ヘッド/テーブル構成のマシンは、テーブル/テーブル設定とヘッド/ヘッド設定が混在しています。 1 つの回転軸は主軸ヘッド上にあり、もう 1 つの回転軸は回転テーブル上にあります。ヘッド/ヘッド構成とは異なり、特定の状況では主軸ヘッドの回転軸が物理的構造や動作範囲の制限に遭遇する可能性がありますが、ヘッド/テーブル構成ではテーブル上の回転軸が自由に回転できるため、ワークピースは回転し続けることができます。 。このセットアップにより、アンダーカットや複雑な表面、または多面のワークピースへのアクセスが向上します。しかし、ワークは回転軸上に固定されているため、回転テーブルの耐荷重や回転能力によってワークの大きさや重量が制限される場合があります。
5 軸 CNC 加工にはいくつかの重要な利点があり、現代の製造業、特に複雑な部品や高精度の製品の加工において不可欠な技術となっています。主な利点の一部を次に示します。
5 つの軸すべてを同時に移動できるため、ツールの角度と位置を動的に調整でき、ワークピースの届きにくい領域へのアクセスが向上します。これにより、従来の 3 軸または 4 軸加工では非常に困難または不可能だった深いキャビティ、アンダーカット、自由曲面、複雑な輪郭などの非常に複雑な形状の加工が可能になります。
効率的な加工: 5 軸加工では、1 回のセットアップで多面加工を完了できるため、複数のセットアップや位置変更の必要性が最小限に抑えられます。この中断のないプロセスにより、ダウンタイムが削減され、全体的なスループットが向上し、生産サイクルの短縮につながります。
高精度: 5 軸加工機は、5 つの自由度にわたって工具を制御することにより、優れた精度を達成できます。この正確な制御により、複雑な表面が、多くの場合マイクロメートルレベルにまで及ぶ厳しい公差に合わせて機械加工されることが保証されます。 5 つの軸すべてを同時に動かすことで、切削工具は加工プロセス全体を通じて最適な位置と方向を維持し、誤差を減らし、精度を向上させます。
5 軸加工の回転軸は、切削工具がワーク表面に対して一定の最適な切削角度を維持できるようにすることで、この面で重要な役割を果たします。これにより、工具のびびりのリスクが軽減され、より滑らかで高品質な表面が確保されます。仕上げる。さらに、5 軸加工により短い切削工具の使用が可能になり、振動やたわみが低減され、優れた表面仕上げが得られ、追加の仕上げプロセスの必要性が最小限に抑えられます。
5 軸加工により、複雑なコンポーネントを 1 回のクランプ操作で作成できます。これにより、治具やツールを頻繁に交換する必要性が最小限に抑えられ、位置ずれ、エラー、潜在的なワークピースの損傷のリスクが軽減されます。最適化されたツールパスは、切削工具にかかる応力と熱を軽減し、工具の寿命を延ばすように設計されています。これにより、工具交換やメンテナンスの中断が減り、より連続的で効率的な加工プロセスに貢献します。
5 軸 CNC 加工技術の多用途性により、その用途はさまざまな業界に拡大しています。
航空宇宙: 航空機部品、エンジン部品、その他の高精度で複雑な製品の製造に広く使用されています。
軍事: 精度と信頼性が重要な精密武器や機器の製造に不可欠です。
精密機器および医療機器: 厳しい精度と表面品質要件を備えた機器や機器の作成に最適で、重要なアプリケーションで最適なパフォーマンスと信頼性を確保します。
5 軸 CNC 加工には利点があるものの、次のような制限もあります。
5 軸 CNC 機械は、主に高度な設計と機能により、従来の 3 軸および 4 軸機械よりも高価です。さらに、多数の可動部品を備えた複雑な機械構造には定期的な保守と校正が必要なため、これらの機械のメンテナンスコストも高くなります。さらに、高度な制御システムには専門家の注意が必要であり、運用コストがさらに増加します。
高度な CAM (コンピューター支援製造) ソフトウェアと、5 軸 CNC 加工用のプログラムを作成する高度なスキルを備えたオペレーターが必要です。さらに、このプロセスには時間がかかるため、正確かつ効率的なツールパスを確保するには詳細な計画と検証が必要です。この複雑さにより、トレーニング コストが増加し、セットアップ時間が長くなる可能性があります。
オペレーターは、機械とその制御システムの複雑さを理解するために専門的なトレーニングを必要とします。オペレーターはこれらの機械の高度な機能の取り扱いに習熟する必要があるため、オペレーター向けの特別なトレーニングを行うとさらにコストがかかります。
シナリオによっては、5 軸加工が実現できない場合があります。たとえば、短いカッターや幅広のハンドルを使用する場合、5 軸加工技術では、傾斜した角度で発生する振動により問題が発生する可能性があります。これらの振動は加工精度や表面仕上げに悪影響を及ぼし、特定のタスクでは 5 軸加工の効率が低下する可能性があります。このような場合、5 軸加工の利点がそれほど重要ではない特定の用途に安定性と精度を提供する 3 軸加工の方がより現実的な選択肢となる可能性があります。
この記事を通じて、5 軸 CNC 加工について包括的に理解していただけたと思います。この高度な技術により、非常に複雑な形状の製造が可能になり、優れた表面仕上げを備えた複雑な部品の作成が容易になります。初期コストは高くなるかもしれませんが、5 軸加工は長期的には時間とコストを最終的に節約します。精密 5 軸加工プロジェクトをより効率的かつコスト効率よく行うには、信頼できるパートナーを選択する必要があります。チゴ以外に探す必要はありません。
Chiggo は、中国を代表するCNC 加工サービスプロバイダーの 1 つです。高品質の 5 軸 CNC マシンと経験豊富な専門家により、当社は高品質の部品、競争力のある価格、短納期を提供します。さらに、さまざまな加工オプションとオンデマンドの製造ソリューションも提供します。精密 5 軸加工に関してご質問やご要望がございましたら、お気軽にお問い合わせまたは見積り依頼ください。
お気に入りのコーヒーマグをキッチンの床に落とすことを想像してみてください。ここで、転倒後にスマートフォンの画面がクモの羽ばたき、または地震中の補強されていないコンクリートの壁がひび割れていることを想像してください。これらの日常の例は、警告なしに突然の破損につながる可能性のある物質的な特性であるBrittlenessを強調しています。安全性と信頼性のために重要な状態:建物、橋、または製品の脆い成分は、説明されていないと壊滅的に失敗する可能性があります。歴史は厳しいリマインダーを提供します。最も有名なRMSタイタニックは、極寒の大西洋の水域で脆くなり、曲げよりも衝撃に割れ、災害に貢献しています。エンジニアとデザイナーは、曲がったり引き伸ばされたりする延性材料とは異なり、脆いものがストレスの下でスナップする傾向があるため、脆性に細心の注意を払っています。 この投稿では、Brittlenessとは何か、それが硬度と靭性とどのように異なるかを探ります。また、ガラスや鋳鉄のような材料が脆弱である理由、およびエンジニアリングデザインでの脆性をテストおよび軽減する方法も説明しています。 brittlenessとは何ですか? 材料科学の脆性は、事前にプラスチックの変形をほとんどまたはまったくない材料の骨折する傾向を指します。簡単に言えば、脆い材料は曲がったり、伸びたりすることはありません。壊れます。もろい物体を曲げようとすると、プラスチックの変形を起こすのではなく、すぐにクラックまたはスナップします。これはその反対です延性、故障する前に、重大なプラスチック変形(たとえば、ワイヤーに引き込まれたり曲がったりする)を維持する材料の能力。非常に延性のある金属(銅や金など)は曲がったり、伸ばしたり、かなり引き出したりすることができますが、脆性材料(ガラスやセラミックなど)が小さな弾性ひずみだけの後に骨折します。 骨格と延性、靭性、硬さ 脆弱性と延性を比較すると、骨折前に粗末に材料がどれだけの材料を変形できるかにかかっています。脆性材料は非常に低い延性を持ち、小さなひずみでそのブレークポイントに達します。延性のあるものは、重大な塑性変形を維持できます。金属では、一般的な経験則は、休憩時の伸長〜5%がしばしば呼ばれることです脆い、一方、〜5%が考慮されます延性(材料およびテスト依存性、セラミックとガラスは通常1%をはるかに下回っています)。実際には、脆い材料はほとんど警告を与えません。彼らはスナップする前に目に見えて曲げたり首を曲げたりしません。にストレス - ひずみ曲線、延性材料は、収量と長いプラスチック領域を示しますが、脆性材料は、最小限の可塑性で突然の骨折までほぼ直線的に弾力性があります。 タフネス破壊前に材料が吸収するエネルギーを説明します(ストレス - ひずみ曲線の下の領域)。通常、材料が高強度と良好な延性を組み合わせると増加します。それは、脆性の厳格な「反対」ではありません。ゴム製のタイヤは、変形して衝撃を吸収するため、困難です。アニールされたガラスは、柔軟に変形できないため脆く、鋭い打撃はそれをひび割れさせることができます。 硬度別の概念です。これは、ひっかき傷や局所的なインデンテーションに対する抵抗です。素材は非常に硬いが脆弱な場合があります。たとえば、ダイヤモンドは引っ掻きに抵抗しますが、可塑性の欠如は、鋭い打撃の下でチップまたは切断することができます。逆に、比較的柔らかいもの(ゴムのような)は、変形する可能性があるため、衝撃に対する亀裂に抵抗する可能性があります。要するに、硬度は局所的な変形に対する耐性に関するものですが、脆性は骨折の挙動を説明しています。 脆性材料の例とそれらがどのように失敗するか 多くの日常的および産業材料は、脆い行動を示しています。ここにいくつかの例があり、それらがストレスの下でどのように失敗するかを示します。 ガラス:普通のガラス(窓ガラスや飲料ガラスなど)は、古典的な脆性素材です。圧縮は非常に硬くて強いですが、引張ストレスや衝撃の下では、柔軟に変形することはできません。硬い床にガラスを落とすと、通常は大きな鋭い破片に骨折します。故障は亀裂の伝播によるものです。小さな欠陥または衝撃点が亀裂を開始すると、プラスチックの変形がほとんどなくガラスを通り抜けます。この脆弱性はその構造に由来します。シリカネットワークは硬くてアモルファスであり、金属とは異なり、ストレスを和らげるモバイル脱臼はありません。興味深いことに、特別な治療法は、ガラスの壊れ(たとえば、表面圧縮応力を導入するために熱処理することによって生成される強化ガラス)を変えることができますが、まだ脆弱ですが、小さくて鈍いダイイスのようなピースに壊れる傾向があります(したがって「安全ガラス」)。フロントガラスで使用されるラミネートガラスは、2つのガラスのプライをプラスチックの中間層(通常はPVB)に結合するため、亀裂が形成されると、層状層がピースを一緒に保持します。これらの処理は故障モードを緩和しますが、根本的にガラスは曲げずに割れて失敗します。 セラミック:セラミックも同様に脆いです。セラミックの花瓶を棚からノックすると、へこみではなくチップまたは粉砕されます。構造的には、セラミックはイオン的および/または共有結合されており、しばしば多結晶です(磁器にもガラスの相が含まれています)。たとえば、磁器プレートでは、原子格子は剛性です。ストレスをかけると、原子面は簡単に滑ることができません。イオン固体では、小さなシフトが同様の充電イオンを並べてもたらし、強く反発し、亀裂が開始されます。転位運動は制限されており、結合は方向性があるため、セラミックは硬度と圧縮強度が高くなりますが、緊張や曲げの下でスナップする傾向があります。それらが故障すると、骨折表面は通常きれいになり、結晶面に沿ってファセットされます(切断)。容量を超えて装填されたセラミックタイルは、体を突破し、清潔でガラスのような骨折で壊れる亀裂が発生し、実質的に目に見える収量はありません。 鋳鉄(特に灰色の鋳鉄):鋳鉄は金属ですが、特定のグレードは脆いことがあることで有名です。古い鋳鉄製のエンジンブロックや鋳鉄パイプの亀裂を見たことがあるなら、脆性骨折を目撃したことがあります。灰色の鋳鉄(骨折表面の灰色にちなんで名付けられた)は、比較的高い炭素含有量を持っています。炭素は、鉄マトリックス全体に分布するグラファイトフレークを形成します。これらのフレークは内部亀裂と強いストレス濃縮器のように振る舞うので、金属は壊れる前にあまり伸びることはできません。その結果、鋳鉄は圧縮が非常に強い(均等にサポートされている場合)が、緊張や衝撃の下で突然故障する可能性があります。対照的に、延性(結節性)鉄は、グラファイトが誘導され、球状結節を形成する修正鋳鉄です(通常はマグネシウム処理を介して)。それははるかに脆く、粉砕するのではなく衝撃下で変形します。これについては、デザインセクションでさらに説明します。 コンクリート:コンクリートは固体で岩のように見えるかもしれません(そしてそれはそうです)が、それは脆い材料の別の例です。圧縮下では、コンクリートは非常に強く、非常に大きな負荷を運ぶことができます。ただし、緊張(引っ張ったり曲げたりする)では、単純なコンクリート亀裂が簡単に亀裂があります。セメントペーストとハードミネラル凝集体の混合は、粗末な流れる能力を備えた剛性マトリックスを形成するため、小さな張力株は微小亀裂を開いてすぐに合体します。そのため、鉄筋コンクリートが非常に一般的です。鋼鉄の鉄筋は、張力を運ぶように埋め込まれ、延性(および靭性)を加えるように埋め込まれています。鋼は、セクションを一緒に保持し、突然の脆性崩壊よりも警告を保持し、警告を提供し、徐々に拡大します。 その他の脆い材料:他にも多くの例があります。高炭素または高度に硬化したツール鋼は、和らげないと脆くなる可能性があります。より高い炭素と硬度が延性を低下させるため、曲がったときにファイルまたは非常に硬いナイフブレードがスナップする場合があります。鉛筆の「鉛」のように、グラファイトは脆弱です。その層状構造により、平面がスライドしてマークを残すことができますが、スティックは控えめな力の下で簡単に壊れます。一部のポリマーも脆いです。ポリスチレン(使い捨てのカトラリーや古いCDのケースで使用される剛性プラスチック)は、曲がるのではなくスナップする傾向があります。 なぜいくつかの材料が脆弱なのですか? 脆性を理解するために、マイクロスケールと原子スケールの材料内で何が起こるかを見るのに役立ちます。材料は原子結合と微細構造が異なり、これらの違いはストレスへの反応を決定します。 結晶金属では、非局在化された金属結合とモバイル脱臼は通常、プラスチックの流れを可能にします。スリップが簡単な場合、ストレスの再分配と亀裂のヒントが鈍化します。結合が非常に方向性がある場合、またはクリスタルが動作可能なスリップシステムをほとんど提供していない場合、可塑性は制限されています。亀裂が核形成して伝播するまでストレスが集中します。 次に、微細構造がその亀裂がどのように成長するかを決定します。鋭い包含物、硬い第2フェーズ、毛穴、または弱いインターフェイスは、亀裂の発射サイトと経路として機能します。温度とひずみ速度も重要です。温度の低下またはひずみ速度が高いと、可塑性が削減され、脆性骨折に向かって挙動が押し上げられます。環境はバランスを傾ける可能性があります。原子の水素は亀裂を加速しますが、穀物結合の分解(例えば、顆粒間腐食や不純物の分離など)は境界に沿った凝集を減らします。 簡単に言えば、プラスチックの宿泊施設が希少で亀裂運転部隊が支配しているときに、脆性が現れます。材料が脱臼を自由に動かしたり、亀裂先端でエネルギーを消散させたりできない場合、故障は突然であり、ほとんど警告を与えません。 脆性を測定またはテストする方法は? Brittlenessは、ストレス下での材料の挙動に関するものであるため(変形がほとんどなく破壊)、密度や融点のように調べることができる単一の「Brittleness Number」はありません。代わりに、エンジニアは、延性、骨折の靭性、衝撃エネルギーのテストを使用して間接的に特徴づけています。 脆性挙動を測定する標準的な方法の1つは、引張試験です。ストレスと緊張が記録されている間に犬の骨標本が引っ張られ、ストレス - ひずみ曲線が生成されます。脆性応答は、低い領域では、ほとんどまたはまったく降伏領域を持つ、突然の骨折へのほぼ線形の弾性経路です。 2つのクイックインジケーター - 破損時のエリアと面積の削減 - は、延性の尺度です(そして、brittle性を反比例させます)。脆い材料は、低い伸長と面積の最小限の減少を示します(ネッキングはほとんどまたはまったくありません)。金属の場合、テストのセットアップとレポートはASTM E8に従います。 Charpy V-Notch Impact Testでは、振り子が揺れ動く棒が打たれ、振り子エネルギーの損失(スイング高さの変化による)がジュールの吸収エネルギーとして記録されます(j)。低吸収エネルギーは、脆性反応を示します。高エネルギーは靭性を示します。結果は標本のサイズとノッチのジオメトリに依存するため、シャルピーエネルギーは、基本的な材料定数としてではなく、比較と温度研究に最適です。複数の温度でテストを実行すると、延性から脆性の遷移がマッピングされます。エンジニアは骨折の表面も読みます。明るい、ファセット/切断の特徴は脆性骨折を示唆していますが、鈍い繊維状の外観は延性があることを示します。 もう1つの重要な尺度は、平面鎖骨折の靭性です(kIC)、亀裂の成長に対する材料の抵抗を定量化する骨折 - 機械的パラメーター。これは、事前に砕いた試験片の精度テストから決定され、亀裂が伸び始めた臨界応力強度係数を表します。脆性材料は低いkですICしたがって、欠陥の耐性が低いため、極端な亀裂は比較的低いストレスで故障を引き起こす可能性がありますが、丈夫で延性のある材料はkが高いですIC亀裂を鈍らせたり逮捕したりできます。エンジニアは、骨折データを使用して、許容される欠陥のサイズを設定し、突然の骨折に対して設計します。 デザインの脆性障害を防ぐ方法 脆性性は突然の壊滅的な失敗につながる可能性があるため、エンジニアはそれに対処するための戦略を開発しました - 異なる材料を選択するか、材料と設計を変更して脆性行動を危険にさせることにより。 材料の選択と治療 脆性の故障を避ける最も簡単な方法は、緊張、曲げ、または衝撃の部品に対してより延性のある材料を選択することです。構造設計者は、しばしば、壊れる前に屈服して曲がる鋼またはアルミニウム合金を好みます。高い硬度、高温能力、または特定の電気挙動などの特性が必要な場合(本質的に脆性オプション(技術セラミック、ディスプレイガラスなど)を指定する必要があります。鋼では、消費されている高炭素微細構造は非常に硬いが脆い。強化は、タフネスの大きな利益と少し硬く取引します。鋳鉄は別のケースを提供します。灰色の鉄はフレークグラファイトのために脆い。少量のMgまたはCEを追加すると、紡錘体グラファイトを備えた延性(結節性)鉄が生成され、ストレス濃度が低下し、延性と耐衝撃性が著しく改善されます。 複合材料 脆性マトリックスとより延性のある相を組み合わせると、靭性が高まります。鉄筋コンクリートのペアコンクリート(脆性)で鋼鉄鉄筋(延性)を備えているため、セクションが緊張を運び、突然の崩壊を避けることができます。同様に、繊維強化ポリマーとセラミックマトリックスコンポジット埋め込みガラス、炭素、またはアラミド繊維を埋め込む亀裂、偏向、引き抜き、亀裂の成長に必要なエネルギーを増加させます(骨折の靭性が高くなります)。 ジオメトリと安全因子を設計します 鋭い角とノッチを避けることにより、ストレス濃縮器を減らします。寛大なフィレットを使用してください。荷重が最も高い厚さまたはrib骨を追加します。薄いガラスシートは、厚いペインよりもはるかに簡単に壊れます。セラミックとガラスの場合、表面圧縮を誘導する(たとえば、焼き戻し)は、亀裂を開始するためにより高い引張応力を必要とすることにより、明らかな靭性を高めます。脆性部品はほとんど警告を与えないため、設計者はより高い安全因子を使用し、定期的な検査をスケジュールします。たとえば、航空宇宙では、脆弱な方法で動作できるコンポーネントは、X線または超音波で内部亀裂をチェックします。 環境制御 温度と環境は、材料がどのように変形し、骨折するかを変えます。低温で合金が脆くなった場合は、最小サービス温度を設定するか、寒冷気候のために延性から脆性への移行温度が低いグレードを選択します。同様に、水素のピックアップがリスク(高強度鋼の水素包含)である場合、充電を最小限に抑える予防コーティングとプロセスを使用し、吸収された水素を追い出すためにベイクアウト(熱排除)を実行します。 […]
現代の製造業では、CNC 加工はその精度と効率性の点で高く評価されています。製品の CNC 加工を検討している場合、避けられない疑問の 1 つは、コストはどれくらいで、予算内に収まるのかということです。コストは最終価格に大きな影響を与える可能性のあるいくつかの要因に依存するため、CNC 加工には一律の価格はありません。
ベアリングは、シャフトなどの回転部品または可動部品を支持およびガイドする機械部品です。摩擦が軽減され、よりスムーズな回転が可能になり、エネルギー消費が削減されます。ベアリングはまた、回転要素からハウジングまたはフレームに荷重を伝達します。この荷重は、ラジアル方向、アキシャル方向、またはその両方の組み合わせとなる可能性があります。さらに、ベアリングは部品の動きを事前に定義した方向に制限し、安定性と精度を確保します。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español