鋳鉄と鋼はどちらも主に鉄原子 (周期表では Fe と表示されます) で構成される鉄金属です。鉄元素は地球上に豊富に存在しますが、通常は酸化された形で存在し、抽出するには製錬と呼ばれる集中的な処理が必要です。
純鉄は高い磁気特性を備えており、電磁装置のコアの製造によく使用されます。ただし、質感が柔らかく、変形しやすいため、工業生産での直接使用は制限されます。したがって、特性を高めるために、通常は他の元素、特に炭素と合金化されます。たとえば、鋳鉄や鋼は、この改良された鉄合金から派生した金属材料として広く利用されています。
鋳鉄と鋼は外観が似ていますが、それぞれが特定の用途にとって重要な異なる特性を持っています。この記事では、プロジェクトに適切な金属を選択するのに役立つように、これら 2 つの金属を詳しく比較します。
鋳鉄は鉄と炭素の合金の一種で、炭素含有量が 2% ~ 4% と比較的高いです。これは、まず鉄鉱石を高炉で製錬して銑鉄を製造することによって作られます。次に、銑鉄を大量の鉄くずとともに溶かし、溶けた金属を型に流し込んで固めます。 「鋳鉄」という名前は、この鋳鉄の形状に由来しています。
炭素含有量に加えて、通常は 1% ~ 3% のシリコンと、微量のマンガン、リン、硫黄が含まれています。炭素とシリコンは鋳鉄の構造と特性に影響を与える重要な元素です。炭素含有量に由来する黒鉛の形状と分布は、鋳鉄の種類と特性を決定する上で重要です。炭素の形状と微細構造に基づいて、鋳鉄はさらに次のように分類できます。
鋼は鉄の合金であり、炭素含有量はさまざまですが、通常は 2% 未満です。鋼は、溶解した銑鉄を塩基性酸素炉 (BOF) または電気アーク炉 (EAF) で精製して炭素含有量を減らし、不純物を除去し、それを型に流し込んで冷却して固体の鋼を形成することによって製造されます。
特定の特性を持つさまざまなグレードの鋼を製造するために、プロセス中に追加元素が追加され、炭素含有量が調整されます。たとえば、鋼は一般に腐食や錆びやすい傾向にありますが、ステンレス鋼は例外となり、炭素含有量が低く、クロムが 10.5% 以上含まれているため、耐腐食性と錆びに対する顕著な耐性を示します。
鋼は成分や用途の違いにより多くの種類に分類されます。一般的な鋼の種類を次に示します。
2 つの金属を区別するために、まず次の表を調べて予備比較を行ってみましょう。
アイテム | 鋳鉄 | 鋼鉄 |
炭素含有量 | 2%~4% | 2%未満 |
融点 | 華氏2102~2372度 | 華氏2500〜2750度 |
キャスタビリティ | 収縮率が低く、流動性が良いため鋳造が容易です。 | 流動性が低く、収縮が大きいため、鋳造が困難です。 |
強さ | より高い圧縮強度 | より高い引張強度。優れた衝撃強度 |
耐摩耗性 | 良い | 鋳鉄ほどの耐久性はありません |
耐食性 | 耐食性が向上しますが、多くの場合、表面の防錆性に制限されます。 | 炭素鋼には劣りますが、ステンレス鋼は防錆性に優れています |
被削性 | 機械加工が容易になる | 時間がかかり、工具の準備も大変 |
溶接性 | 溶接が難しい | 低い溶接性から非常に良い溶接性までの優れた溶接性 |
料金 | 鉄鋼の製造に必要な材料コスト、エネルギー、労働力が低いため、多くの場合安価です。 | 購入にはより高価であり、キャストにはより多くの時間と注意が必要です |
上の表は、鋳鉄と鋼の一般的な比較を示しています。最初の列にリストされている主な項目に注目してください。ここからは、それらを 1 つずつ詳しく理解していきます。
2 つの金属の主な違いは炭素含有量です。通常、鋳鉄には 2% を超える炭素が含まれていますが、鋼には 2% 未満の炭素が含まれています。一般に、炭素含有量が高くなると、硬度と脆性が大きくなります。
さらに、鋳鉄中のシリコン含有量は鋳鉄の特性に大きく影響し、流動性が向上し、鋳造時の収縮が減少します。対照的に、鋼にはクロム、ニッケル、モリブデンなどの他の合金元素が含まれていることが多く、これらにより強度、靱性、耐食性が向上します。
鋳鉄の融点は通常 1150°C ~ 1300°C (2100°F ~ 2370°F) の範囲ですが、鋼の融点は通常 1370°C ~ 1510°C (2500°F ~ 2800°F) です。 )。
鋳鉄は融点が低いため、溶融状態での流動性が良く、複雑な金型形状への充填や緻密な鋳物の形成が容易になります。さらに、融点が低いため冷却速度が比較的遅くなり、鋳物内の液体金属が収縮によって生じる空隙を埋めるのに時間がかかります。その結果、鋳造プロセス中の気孔や亀裂の形成が最小限に抑えられ、密度が増加した鋳物が得られます。逆に、鋼の融点が高いため、機械加工や高温での熱処理中に強度と靭性を維持することができます。
上で述べたように、鋳鉄は融点が低く、一定のシリコンを含んでいます。凝固中にグラファイトが沈殿し、体積収縮を部分的に補償するため、優れた流動性を示し、冷却中の収縮が少なくなります。したがって、鋳鉄は鋼に比べて鋳造性に優れています。
対照的に、鋼は流動性が低く、成形材料に対する反応性が高く、冷却中の収縮が大きく、鋳造プロセス全体を通じてより多くの注意と検査が必要です。
鋳鉄と鋼はどちらも耐久性が高く評価されていますが、さまざまな強度面で大きく異なります。引張強さ、圧縮強さ、衝撃強さの違いを調べてみましょう。
引張強さ: 鋳鉄の引張強さは比較的低くなります。これは、その構造内に存在するグラファイトフレークまたは球状グラファイトが応力集中点となる傾向があり、引張力がかかると破損しやすくなるからです。逆に、鋼の微細構造はより均一であり、合金化と熱処理によって引張強度を大幅に向上させることができます。
圧縮強度: 一般に、鋳鉄は鋼に比べて優れた圧縮強度を持っています。圧縮応力下では、鋳鉄の黒鉛構造は応力集中には寄与せず、応力の分散に役立ち、高い圧縮強度が得られます。逆に、鋼は圧縮強度と引張強度の両方で同等の性能を示し、圧縮強度の範囲がより広くなります。
衝撃強度: どちらも優れた衝撃強度を示しますが、特に突然の衝撃や動的荷重に耐える能力において、鋼は鋳鉄よりも優れています。これは鋼の延性と均一な微細構造によるもので、衝撃荷重下でも破壊することなく大量のエネルギーを吸収できます。さらに、鋼は衝撃負荷時に加工硬化が起こり、強度がさらに向上します。一方で、鋳鉄は脆いため、衝撃を受けると割れやすくなります。しかし、鋳鉄の一種であるダクタイル鋳鉄は、ねずみ鋳鉄を大きく上回る高い衝撃強度を誇ります。それでも、ダクタイル鋳鉄は鋼の衝撃強さに匹敵することはできません。
鋳鉄は一般に鋼(炭素鋼)よりも機械的摩耗に対して優れた耐性を示します。これは、その硬度と天然の潤滑剤として機能する独特のグラファイト構造によるものです。ただし、鋳鉄は脆いため、動的摩耗環境での用途は制限されます。その結果、機械式ベッドフレーム、滑り軸受、摩擦ライニングなどの静的で低衝撃性の耐摩耗性コンポーネントの製造に最適です。
鋼は高い靭性を備えており、動的摩耗環境においても優れた耐摩耗性を維持し、破壊に耐えます。ギア、切削工具、高摩耗部品など、動的かつ高衝撃性の耐摩耗性コンポーネントの製造に適しています。
どちらの金属も、酸素や湿気にさらされると腐食や錆びやすくなります。ただし、鉄は緑青を生成し、深い腐食を防ぎ、金属の完全性を保ちます。
腐食を防ぐ 1 つの方法は、保護を強化するためにペイントまたは粉体塗装を施すことです。あるいは、クロム、ニッケル、モリブデンなどの合金元素を鋼に組み込んで、鋼の耐食性を高め、さまざまな腐食環境に適応させることもできます。
鋳鉄は優れた被削性を持っています。グラファイトの存在は天然の潤滑剤として機能し、工具の摩耗を軽減し、工具の寿命を延ばします。さらに、鋳鉄 (特にねずみ鋳鉄) は脆いため、加工中に切りくずが小さな断片に簡単に砕けます。これにより、刃物への付着が防止され、よりスムーズな加工が可能になります。
対照的に、鋼の被削性はその成分によって大きく異なります。硬化鋼や高炭素鋼は、機械加工に対する耐性が高く、工具の摩耗を促進する可能性があるため、課題が生じます。一方、低炭素鋼は柔らかいものの、加工中に粘着性が生じる可能性があり、取り扱いが困難になります。したがって、鋼の機械加工を成功させるには、機械加工技術と工具の選択を慎重に検討することが不可欠です。
鋼は鋳鉄と比較して著しく優れた溶接性を示します。鋳鉄は炭素含有量が高く脆いため、溶接中に割れが発生しやすくなります。さらに、溶けた鋳鉄は空気中の窒素や酸素を容易に吸収し、気孔の形成につながります。
鋼の炭素含有量が低いため、溶接プロセス中の制御が容易であり、アーク溶接 (SMAW)、ガスシールド溶接 (GMAW、TIG)、レーザー溶接などを含むさまざまな溶接方法に適しています。
鋳鉄は鋼鉄よりも安価になる傾向があります。主な理由は、鉄鉱石などの原材料が、製鋼に使用される高級鉄や合金に比べて入手しやすく安価であるためです。さらに、鋳鉄の製造プロセスは鋼鉄の製造プロセスよりも単純で、エネルギー消費も少なくなります。
上記の詳細な紹介と比較に基づいて、これら 2 つの金属の違いを包括的に理解できるはずです。ニーズに最適な金属を選択するために、以下の表を参照して、金属特有の利点、制限、主な用途を確認してください。
利点 | 制限事項 | アプリケーション | |
キャスト鉄 | ▪ Cheaper and easier to cast than steel ▪ High compressive strength ▪ Excellent wear resistance ▪ Good machinability, especially softer cast irons like gray iron ▪ Offers high hardness ▪ Good properties for a low cost ▪ Good anti-vibration property | ▪ Low tensile strength ▪ High brittleness | ▪ Pipes and fittings in water and sewage systems ▪ Automotive components like engine blocks, cylinder heads, brake discs, etc ▪ Manhole covers, street furniture, residential fence gates, decorative light posts, fireplace elements, and other furnishings in construction ▪ Cast iron frying pans and other cookware ▪ Bases and frames for heavy machinery |
鋼鉄 | ▪ Higher tensile strength ▪ Higher toughness/ductility ▪ Excellent impact resistance ▪ Better weldability | ▪ More expensive ▪ Prone to corrosion and rust, especially low carbon steel | ▪ Structural beams, rebar, and building frameworks ▪ Automotive body panels, chassis components, and safety components ▪ Rail car wheels, frames, and bolsters ▪ Mining machinery, construction equipment, and heavy trucks ▪ Heavy duty pumps, valves, and fittings ▪ Turbines and other components in power station assemblies |
鋳鉄と鋼の議論でどちらかの側を選択したと思います。ただし、プロトタイピングや生産に適した金属加工サービスを見つけるのは依然として難しい場合があります。Chiggo が最良の選択です。当社のプロフェッショナルな CNC 加工およびダイカスト サービスは、加工が難しい材料でも効率的に処理できるため、加工時間の短縮と加工コストの節約に役立ちます。プロジェクトを当社のプラットフォームにアップロードすると、無料の見積りと DFM 分析ができるだけ早く届きます。 。
さまざまな加工工程において、工具とワークの非接触を実現する加工方法が欲しい場合があります。当然、放電加工 (EDM) について考えることになります。
真鍮は、さまざまな目的でさまざまな業界で一般的に使用される非鉄金属です。複雑な電子コネクタや耐久性のある配管継手から高性能の自動車および航空宇宙コンポーネントまで、真鍮はほぼどこにでもあります。高精度で機械加工する能力は、製造業の最大の選択となります。
設計は、CNC 加工において極めて重要な役割を果たし、製造プロセス全体の基礎を築きます。知られているように、CNC 加工ではコンピューター制御の機械を使用して、ワークピースから材料を正確に除去します。このプロセスは汎用性が高く、再現性があり、正確です。さらに、発泡体やプラスチックから木材や金属に至るまで、幅広い材料と互換性があります。 これらの機能を実現するには、CNC 加工の設計に大きく依存します。効果的な設計により、部品の品質が保証されるだけでなく、CNC 機械加工部品に関連する製造コストと時間が節約されます。 このガイドでは、設計上の制限について説明し、CNC 加工で発生する最も一般的な機能に対する実用的な設計ルールと推奨値を提供します。これらのガイドラインは、部品に対して最良の結果を達成するのに役立ちます。 CNC 加工の設計制限 CNC 加工用の部品を適切に設計するには、まずプロセスに固有のさまざまな設計上の制約を明確に理解する必要があります。これらの制限は、切断プロセスの仕組みから自然に発生し、主に次の側面に関係します。 工具形状 ほとんどの CNC 加工切削工具は円筒形であり、切削長には制限があります。ワークピースから材料を除去する際、これらの切削工具はその形状を部品に転写します。これは、切削工具がどれほど小さくても、CNC 部品の内側のコーナーには常に半径があることを意味します。さらに、工具の長さにより、加工できる最大深さが制限されます。一般に工具が長いと剛性が低下し、振動や変形が発生する可能性があります。 ツールアクセス 材料を除去するには、切削工具がワークピースに直接近づく必要があります。切削工具が届かない表面や形状は CNC 加工できません。たとえば、複雑な内部構造、特に部品内に別のフィーチャーによってブロックされている複数の角度やフィーチャーがある場合、または深さ対幅の比率が大きい場合、ツールが特定の領域に到達することが困難になる場合があります。 5 軸 CNC マシンは、ワークピースを回転させたり傾けたりすることで、これらの工具アクセス制限の一部を緩和できますが、すべての制限、特に工具の振動などの問題を完全に排除することはできません。 工具の剛性 ワークピースと同様に、切削工具も加工中に変形したり振動したりする可能性があります。その結果、製造プロセス中に公差が緩くなり、表面粗さが増大し、さらには工具が破損する可能性があります。この問題は、工具の直径に対する長さの比率が増加する場合、または高硬度の材料を切削する場合にさらに顕著になります。 ワークの剛性 機械加工プロセス中に大量の熱が発生し、強い切削力がかかるため、剛性の低い材料 (特定のプラスチックや軟質金属など) や薄肉構造は機械加工中に変形しやすくなります。 ワークホールディング 部品の形状によって、CNC マシン上での部品の保持方法と必要なセットアップの数が決まります。複雑なワークピースや不規則な形状のワークピースはクランプが難しく、特別な治具が必要になる場合があり、コストと加工時間が長くなる可能性があります。さらに、手動でワークホールドの位置を変更する場合、小さいながらも無視できない位置誤差が発生するリスクがあります。 CNC 機械加工設計ガイドライン 次に、これらの制限を実用的な設計ルールに変換します。 CNC 加工の世界には、広く受け入れられている標準はありません。これは主に、業界と使用される機械が常に進化しているためです。しかし、長期にわたる処理の実践により、十分な経験とデータが蓄積されています。次のガイドラインは、CNC 機械加工部品の最も一般的な機能の推奨値と実現可能な値をまとめたものです。 内部エッジ 推奨される垂直コーナー半径: キャビティ深さの 1/3 倍 (またはそれ以上) 一般に、鋭利な内側の角は避けることをお勧めします。ほとんどの CNC ツールは円筒形であるため、鋭い内角を実現することが困難です。推奨される内側コーナー半径を使用すると、工具が円形のパスをたどることができるため、応力集中点や加工痕が減少し、結果として表面仕上げが向上します。これにより、適切なサイズの工具が使用され、大きすぎたり小さすぎたりすることがなくなり、加工精度と効率が維持されます。鋭角な 90 度の角度の場合は、コーナー半径を小さくするのではなく、T スロット カッターまたはワイヤ切断を使用することをお勧めします。 推奨床半径: 0.5 […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español