3D プリンターのフィラメントは、FDM (溶融堆積モデリング) 印刷で使用される消耗材料 (通常はプラスチック) です。これらはスプールで供給され、プリンターの押出機に供給されます。そこで材料が溶かされ、加熱されたノズルを通して堆積され、層ごとにオブジェクトが構築されます。
フィラメントが異なれば特性も異なるため、どのようなものを作成するかによって適切な選択が異なります。この記事では、最も一般的な 3D プリンティング フィラメントから始めて、より高度な特殊なオプションを見て、プロジェクトに最適な材料を選択するのに役立つ実践的なヒントで終わります。
最も一般的なフィラメントの種類から始めましょう。印刷が簡単で、日常のプロジェクトに多用途に使用できるため、人気があります。

PLA は初心者や愛好家にとって頼りになるフィラメントです。コーンスターチなどの再生可能資源から作られた生分解性プラスチックなので、石油由来のプラスチックよりも環境に優しいです。人民解放軍も最も手頃な価格のフィラメントの 1 つそして入ってきます幅広い色そのため、プロトタイプや装飾的なプリントに人気があります。通常は加熱ベッドを使用せずに比較的低温で印刷され、収縮や反りはほとんどありません。そのため、寸法精度が高く、印刷時の臭いもほとんどなく、最も使いやすい素材の一つです。
ただし、PLA は硬いですが脆く、柔軟性が低いため、応力がかかると折れる傾向があります。また、耐熱性が低く、50 ~ 60 °C 付近で部品が柔らかくなり始めるため、高温の車内や直射日光にさらされるとプリントが反ることがあります。さらに、PLA は紫外線にさらされると劣化するため、屋外での長期使用には適していません。
用途:極度の強度よりも印刷のしやすさや細部の美しさが重視されるプロトタイプ、ホビーモデル、フィギュア、装飾部品に最適です。コスプレの小道具、ストレスの少ない筐体、および新規ユーザーの学習教材として一般的です。
| 抗張力 | 曲げ弾性率 | 印刷温度 | プリントベッド温度 |
| ~53~65MPa | ~3.6~3.8 GPa | 190~220℃ | 45~60℃ |

ABS は、最初に広く使用された 3D プリント プラスチックの 1 つで、レゴ ブロックの素材としても知られています。 3D プリントでは、PLA と比較してその靭性と高い耐熱性が評価されています。プリントは強く、耐久性があり、耐衝撃性が高く、約 100 °C まで形状を保持します。 ABS は後処理にも適しています。研磨したり、アセトン蒸気で滑らかにして光沢のある仕上がりにすることができます。
ただし、ABS は印刷が困難です。反りや割れを軽減するには、より高い押出温度、加熱ベッド、そして理想的には密閉型プリンターが必要です。また、顕著な煙も発生するため、十分な換気が重要です。
用途:機械部品、自動車部品、ツールハンドル、スナップフィットエンクロージャなど、靭性や耐熱性が必要な機能的なプロトタイプや最終用途の部品に適しています。ドローンのフレームやRCカーの部品にもよく見られます。屋外での使用には、多くの場合、PLA よりも ABS (またはその耐紫外線性の ASA) が適しています。
| 抗張力 | 曲げ弾性率 | 印刷温度 | プリントベッド温度 |
| ~40~50MPa | ~2.0~2.5 GPa | 220~250℃ | 90~110℃ |

PETG は PLA と ABS の長所を組み合わせたもので、PLA よりも強く、耐衝撃性と耐熱性に優れていますが、ABS よりも印刷が容易です。通常、プリントはわずかに光沢のある仕上がりで、層の接着力が強く、耐薬品性に優れ、ナイロンよりも吸湿性が低いため、ほとんどの環境で安定します。 PETG は、純粋な形でも食品に安全です。ただし、PETG はフィラメントに粘着性があり、プリント ベッドへの粘着力が強すぎるため、印刷時に糸引きが発生することがあります。
用途:機能的なプロトタイプ、コンテナ、スナップフィット部品、および PLA では失敗する屋外用途に最適です。これは、ブラケット、保護ハウジング、ドローン部品、耐水性プリントによく使用されます。
| 抗張力 | 曲げ弾性率 | 印刷温度 | プリントベッド温度 |
| ~50~60MPa | ~2.0~2.2GPa | 220~250℃ | 70~90℃ |

TPU は、プラスチックというよりもゴムに近い柔軟なフィラメントです。曲げ、伸ばし、圧縮しても割れず、また、割れずにたわむことで衝撃を吸収するため、優れた耐衝撃性を示します。 TPU は耐摩耗性があり、油やグリースにも強いため、シール、ガスケット、自動車部品などに使用されます。
TPU の印刷は難しい場合があります。その柔らかさはボーデン押出機での供給の問題を引き起こす可能性があり、一貫した結果を得るには遅い印刷速度が必要です。通常、ベッドの接着は簡単で、反りも最小限に抑えられますが、設定を調整するには忍耐が必要です。
用途:電話ケース、ガスケット、シール、ショックアブソーバー、RC タイヤ、ウェアラブル ストラップなどの柔軟な部品に最適です。弾力性と耐衝撃性が必要な場合は、TPU が最適な選択肢です。
| 抗張力 | 曲げ弾性率 | 印刷温度 | プリントベッド温度 |
| ~30~55MPa | ~25 ~ 75 MPa (非常に低く、非常に柔軟) | 210~240℃ | 20 ~ 60 °C (多くの場合はオプション) |
上記の標準的なプラスチック以外にも、より丈夫で、より要求の厳しい、またはより審美的な用途向けに設計された特殊フィラメントが数多くあります。ここでは、最も注目すべき高度なオプションとその主な特徴をいくつか紹介します。

ナイロンフィラメントは強く、丈夫で、耐摩耗性があります。脆い PLA とは異なり、半柔軟性があり、非常に壊れにくいです。応力がかかると、ナイロンは折れるのではなくわずかに曲がったり変形したりするため、耐衝撃性に優れています。また、融点も比較的高く、その靭性と柔軟性により、薄い部分はリビング ヒンジとして機能します。
とはいえ、ナイロンはプリント用の先進的な素材です。反りを軽減するには、高い押出温度、加熱ベッド、および多くの場合密閉されたビルド チャンバーが必要です。もう 1 つの大きな課題は、ナイロンは非常に吸湿性が高いことです。空気中の湿気をすぐに吸収します。濡れたフィラメントは印刷中に弾けたり、ジュージューと音を立てたりして、弱い欠陥のある部品を生成します。これを避けるために、ナイロンは乾燥剤と一緒に保管し、使用前に頻繁に乾燥させる必要があります。また、PLA や ABS よりもコストが高く、安定したベッド接着力を得るのが難しい場合があります。
用途:強度、靱性、低摩擦が要求される機能部品およびエンジニアリング部品。典型的な例には、ギア、ブッシュ、ナットとボルト、ヒンジ、ブラケット、ドローン フレームなどがあります。ナイロンの耐久性は、PLA や ABS が故障するような高応力のプロトタイプや摩耗しやすいコンポーネントにも適しています。
| 抗張力 | 曲げ弾性率 | 印刷温度 | プリントベッド温度 |
| 40~85MPa | 0.8~2GPa | 225~265℃ | 70~90℃ |

ポリカーボネートは工業用グレードの熱可塑性プラスチックであり、デスクトップ機で印刷できる最も丈夫な素材の 1 つです。耐衝撃性に優れ、わずかに曲がっても割れず、高温環境でも強度を維持します。
ポリカーボネートの印刷は難しく、通常は専門家の努力が必要と考えられています。非常に高い押出温度、加熱されたベッド、そして理想的には深刻な反りを防ぐために加熱された筐体が必要です。また、この素材は湿気を素早く吸収するため、乾燥した状態に保つ必要があり、高温に耐えられる全金属製のホットエンドが必要です。また、PC は標準のフィラメントよりも高価であり、高度なセットアップにより適しています。
用途:熱や衝撃に耐える高性能機能部品。例としては、産業用備品、安全装置ハウジング、工具部品、要求の厳しいプロトタイプなどが挙げられます。
| 抗張力 | 曲げ弾性率 | 印刷温度 | プリントベッド温度 |
| ~72MPa | 2.2~2.5GPa | 260~310℃ | 80~120℃ |

「カーボンファイバー」フィラメントは純粋なカーボンファイバーではありません。これは、通常、PLA、PETG、ナイロン、ABS などのベース プラスチックに、細かく刻んだ炭素繊維を混合した複合材料です。カーボンファイバーを追加すると、材料の剛性が大幅に向上し、寸法の安定性が高まり、引張強度もわずかに向上します。ナイロンや ABS などの反りやすい素材では、カーボンファイバーが収縮や変形を軽減します。
炭素繊維はフィラメントを研磨するので、硬化鋼またはルビーのノズルを使用する必要があります。そうしないと、真鍮のノズルがすぐに摩耗してしまいます。部品はより硬く、より強力になりますが、大きな衝撃を受けると曲がらずに折れてしまう、より脆い傾向もあります。印刷設定は基材の設定に近いままですが、コストも高くなります。完成したプリントはマットな表面を持ち、多くのユーザーがこれを追加の利点として認識しています。
用途:ドローンフレーム、RCカーシャーシ、ブラケット、ツーリング治具、機能プロトタイプなど、曲がってはいけない強力かつ軽量な部品に最適です。エンジニアは、軽量と高剛性を組み合わせる必要がある部品にカーボンファイバー ナイロンを選択することが多く、場合によってはアルミニウムの代替品として使用されることもあります。
| 基材 | 抗張力 | 曲げ弾性率 | 印刷温度 | プリントベッド温度 |
| 人民解放軍CF | ~50~65MPa | 4.5~6.0GPa | 210~230℃ | 55~65℃ |
| PETG CF | ~45~60MPa | 3.5~5.0GPa | 230~250℃ | 70~90℃ |
| ナイロンCF | ~50~80MPa | 5.0~7.0GPa | 250~280℃ | 90~120℃ |

金属充填フィラメントは、微細な金属粉末をベースプラスチック (通常は PLA) に混合します。一般的なタイプには、青銅、銅、真鍮、スチール入り PLA などがあります。金属含有量が追加されると、プリントに金属的な外観と顕著な重量が加わります。プリンタから出したばかりのパーツは通常、粗いマット仕上げになっており、本物の金属の輝きを引き出すにはサンディングや研磨などの後処理が必要です。
これらのフィラメントは、標準的な PLA よりも印刷が困難です。多くの場合、詰まりを防ぐために、印刷速度を遅くし、ノズル温度を高くする必要があります。カーボンファイバーと同様に、金属粒子は研磨性があるため、硬化鋼またはルビーのノズルを強くお勧めします。また、プリントは脆くなる傾向があり、剛性は増しますが靭性は失われます。また、材料は一般に一般的なフィラメントよりも高価です。
用途:リアルな金属の外観と重量が重要なコスプレ小道具、彫像、ジュエリー、装飾品、コンセプトモデルに最適です。
| 抗張力 | 曲げ弾性率 | 印刷温度 | プリントベッド温度 |
| PLA と同等 (わずかに脆い) | PLAより高い(硬い) | 200~230℃ | 50~70℃ |

PEEK は、3D プリントに使用できる最も先進的な熱可塑性プラスチックの 1 つとみなされています。これは、優れた機械的強度、耐摩耗性、耐薬品性、固有の難燃性を備えた高性能熱可塑性プラスチックとして認識されています。優れた強度対重量比のおかげで、PEEK は厳しい環境において金属の代わりに使用できる場合があります。また、生体適合性があり滅菌可能であるため、医療および科学の分野で価値があります。
ただし、PEEK を使用した印刷は非常に困難です。非常に高い押出温度を維持できる特殊な装置、加熱されたチャンバー、反りを防ぐための高温の造形面が必要です。材料が亀裂を生じずに適切に結晶化するように、プロセスを注意深く制御する必要があります。これらの厳しい要件のため、PEEK に適しているのは産業用機械または高度なプロフェッショナル プリンターだけです。さらに、フィラメント自体は標準的なプラスチックよりも大幅に高価であるため、その使用は専門的および産業的な用途に限定されます。
用途:絶対的に最高の性能が必要な場合にのみ選択される PEEK は、航空宇宙部品、高性能自動車部品、医療用インプラント、石油およびガス用途に使用されています。
| 抗張力 | 曲げ弾性率 | 印刷温度 | プリントベッド温度 |
| ~90~100MPa | 3.5~4.0GPa | 380~420℃ | 120~230℃ |
パーツの重要なプロパティを定義することから始めます。高い強度と耐久性、柔軟性、または熱や屋外天候への耐性が必要かどうかを検討してください。たとえば、PLA は単純なプロトタイプに適していますが、ABS または PETG は耐久性のある耐荷重コンポーネントに適しています。ガスケットや携帯電話のグリップなど、曲げる必要がある部品には、TPU またはその他の柔軟なフィラメントをお勧めします。
プリンターのホットエンドと加熱ベッドが必要な温度を達成できることを確認します。ナイロンやポリカーボネートなどの材料は、より高い押出温度と加熱された筐体を必要とすることがよくあります。カーボンファイバーや金属が充填されたバージョンを含む研磨フィラメントは、摩耗を防ぐために硬化ノズルを使用して印刷する必要があります。
最終用途に適した材料を選択してください。屋外での使用の場合、PETG または ASA は、耐紫外線性と耐候性により優れた性能を発揮します。高温環境では、ABS、PETG、ナイロン、またはポリカーボネートが必要になる場合があります。食品と接触する部品の場合は、認定された PLA または PETG のみを考慮する必要があります。高精度のフィーチャーには、PLA や PETG などの低収縮材料を使用します。
PLA と PETG は滑らかな表面を作り出すことができ、ABS は化学的に滑らかにすることができ、木材や金属が充填された特殊なフィラメントにはサンディングや研磨が必要になることがよくあります。希望の仕上がりを実現するために追加の後処理の準備ができているかどうかを検討してください。
PLA と ABS は安価で広く入手可能です。 PETG と TPU は手頃な価格で入手しやすいのに対し、ナイロン、ポリカーボネート、複合材料はより高価です。 PEEK や PEI などの高性能プラスチックは高価であり、主に産業用途で使用されます。
PLA と PETG は使いやすく、ほとんどの初心者に適しています。 ABS と ASA は機械的性能と耐熱性が優れていますが、より慎重なセットアップが必要です。ナイロンやポリカーボネートなどの先進的なエンジニアリング プラスチックは優れた特性を提供しますが、プロ仕様のプリンターが必要です。
すべての優れた 3D プリントは、適切なフィラメントの選択から始まります。 Chiggo では、お客様のプロジェクトのニーズを満たすために、あらゆる種類のカスタム 3D プリント サービスを提供しています。幅広い材料の選択と専門的な専門知識により、当社は強度があり、正確で、すぐに生産可能な部品をお届けします。今すぐ CAD ファイルをアップロードしてくださいすぐに見積もりを取得するには。
ストレスとひずみは、材料が力にどのように反応するかを説明するための最も重要な概念の2つです。応力は、負荷下の材料内の単位面積あたりの内部力であり、ひずみは、適用された力から生じる材料の形状の変形または変化です。 ただし、ストレスとひずみの関係は理論をはるかに超えています。これは、健全なエンジニアリングの決定に不可欠です。それらを並べて比較することにより、材料のパフォーマンス、安全性がどれだけ安全に変形できるか、いつ失敗する可能性があるかをよりよく予測できます。この記事では、それらの定義、違い、関係、および実用的なアプリケーションについて説明します。 詳細に入る前に、ストレスと緊張に関するこの短い入門ビデオが役立つことがあります。 ストレスとは ストレスは、外部負荷に抵抗するために材料が発達する単位面積あたりの内部力です。顕微鏡的に、適用された負荷は、変形に反対し、構造を一緒に「保持」する原子間力を誘導します。この内部抵抗は、私たちがストレスとして測定するものです。 負荷の適用方法によっては、ストレスは次のように分類されます。 引張応力(σt)および圧縮応力(σc):これらは、断面領域に垂直に作用する正常な応力です。 せん断応力(τ):断面領域と平行に作用する接線力によって引き起こされます。 ねじれ応力(τt):トルクまたはねじれによって誘発されるせん断応力の特定の形態。 その中で、引張ストレスは、エンジニアリング設計における最も基本的なタイプのストレスです。計算式は次のとおりです。 どこ: σ=ストレス(Paまたはn/m²;時々psi) f =適用力(n) a =力が適用される元の断面領域(m²) 材料のストレスがどのように測定されるか 直接ストレスを測定することは不可能なので、代わりに、適用された力または結果として生じる変形のいずれかを測定する必要があります。以下は、重要な測定技術の簡潔な概要です。 方法 /テクノロジー原理測定デバイス /ツール精度と精度一般的なアプリケーションユニバーサルテストマシン(UTM))測定力(f)、ストレス= f/aを計算します統合されたロードセルを備えたUTM★★★★★(高精度)基本的な材料テスト:ストレス - ひずみ曲線、機械的特性評価ひずみゲージ測定ひずみ(ε)、σ= e・ε(線形弾力性を想定)を介して応力を計算する ひずみゲージ、データ収集システム★★★★☆(高)コンポーネント応力分析;疲労評価;組み込み構造監視拡張計測定値の長さの変化、εとσを計算します接触または非接触拡張メーター★★★★☆(高)標本の引張試験;弾性弾性率と降伏ひずみの検証デジタル画像相関(DIC)光学方法は、フルフィールドの表面変形を追跡します高速カメラシステム、DICソフトウェア★★★★☆(フルフィールド)フルフィールドひずみ分析。クラック追跡;物質的な不均一性研究超音波ストレス測定ストレス下での材料の波速度の変化を使用します超音波プローブとレシーバー★★★☆☆(中程度)残留応力検出;溶接されたジョイントと大きな構造における応力監視X線回折(XRD)内部応力によって引き起こされる格子歪みを測定しますXRD回折計、専門ソフトウェア★★★★☆(高精度、表面層に局在する)薄膜、溶接ゾーン、金属およびセラミックの表面残留応力光弾性透明な複屈折材料の光学干渉フリンジを介してストレスを視覚化します偏光のセットアップと複屈折ポリマーモデル★★★☆☆(半定量的な定性)教育デモ;透明モデルにおける実験的ストレス分析マイクロ/ナノスケールの特性評価技術 EBSD、マイクロラマン、ナノインデンテーションなどのテクニックは、マイクロまたはナノスケールのひずみ/ストレスマッピングを提供します 電子またはレーザーベースのシステム、画像分析ソフトウェア★★★★☆(高精度;ローカライズされたマイクロ/ナノスケール) マイクロエレクトロニクス、薄膜、ナノインデンテーション、複合界面の動作 ひずみとは ひずみは、外力にさらされると材料が受ける相対変形の尺度です。これは、単位のない量またはパーセンテージとして表現され、元の長さ(または寸法)の長さ(またはその他の寸法)の変化を表します。 ひずみのタイプは、適用されるストレスに対応します:引張ひずみ、圧縮ひずみ、またはせん断ひずみ。 通常のひずみの式は次のとおりです。 どこ: ϵ =ひずみ(無次元または%で表されます) ΔL=長さの変化 l0=元の長さ 材料の株が測定される方法 さまざまな方法を使用して、ひずみを測定できます。最も一般的に使用される手法は、ひずみゲージと伸筋です。以下の表は、材料のひずみを測定するための一般的な方法をまとめたものです。 方法センシング原則センサー /トランスデューサー測定シナリオ備考ひずみゲージ抵抗の変化フォイルタイプのひずみゲージ静的または低周波ひずみ;一般的に使用されます業界で広く使用されています。低コスト;接着剤の結合と配線接続が必要です拡張計変位クリップオン /コンタクト拡張計材料テスト;全セクション測定高精度;動的テストや高度に局所的な株に適していませんデジタル画像相関(DIC)光学追跡カメラ +スペックルパターンフルフィールドひずみマッピング。亀裂伝播;複雑な形の標本非接触; 2D/3D変形マッピング。高価なシステム圧電センサー圧電効果圧電フィルムまたはクリスタル動的ひずみ、圧力、衝撃、振動高周波応答;静的ひずみ測定には適さないファイバーブラッググレーティング(FBG)光学(ブラッグリフレクション)FBG光ファイバーセンサー長距離にわたる分布または多重化測定EMIの免疫;航空宇宙、エネルギー、スマート構造に適していますレーザードップラー振動計(LDV)ドップラー効果LDVレーザープローブ動的ひずみ/速度測定と表面振動分析非接触;高解像度;高い;表面条件に敏感です ストレスとひずみの重要な違い 以下は、直接の概要を提供するクイックテーブルです。 側面ストレス歪み式σ= f / aε=Δl /l₀ユニットPA(n/m²)、またはpsi(lbf/in²)無次元または%原因外力ストレスによって引き起こされる変形効果内部力を生成して、外部負荷に対抗します。高すぎる場合、塑性変形、骨折、疲労障害、ストレス腐食亀裂につながる可能性があります材料のジオメトリを変更します。降伏点を超えて永続的に弾性制限で回復可能行動材料が抵抗しなければならない領域ごとの内部力。分布に応じて、圧縮、張力、曲げ、またはねじれを引き起こす可能性があります適用された応力下で材料がどれだけ変形するかを説明します。弾性またはプラスチックにすることができます ストレスと緊張が互いにどのように関連するか ストレスはひずみを引き起こします。応力 - ひずみ曲線は、適用された応力に対してひずみ(変形)をプロットすることにより、材料が徐々に増加する荷重の下でどのように変形するかをグラフ化します。その重要なポイントを確認しましょう。 1。弾性領域(ポイントO – B) […]
CNC 旋削は、最も広く使用されている CNC 加工プロセスの 1 つであり、その精度と汎用性が製造業界で高く評価されています。これには、旋盤またはターニングセンターで回転するワークピースから材料を除去する固定切削工具が含まれます。このプロセスは主に、円形または軸対称の特徴を持つ部品を製造するために使用されます。切断操作の種類に応じて、円筒形、円錐形、ねじ切り、溝付き、または穴付きのコンポーネントや、特定の表面テクスチャを持つ部品を作成できます。
3D印刷とCNC加工の最大の違いは、1つの方法がレイヤーごとに部品層を構築するのに対し、もう1つの方法は材料を除去することで機能することです。 CNCの機械加工と3Dプリントを製品用に選択する岐路に立っていることに気づいた場合は、詳細を確認してください。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español