应力 - 应变曲线是您在入门材料科学或材料机制中遇到的最常见图表之一。尽管起初它的许多标记点和区域似乎都在令人生畏,但绘图和掌握压力与压力的掌握实际上都非常简单。在本文中,我们将详细探讨应力 - 应变曲线,以便您更好地理解它。
但是在开始之前,让我们首先回顾以下问题的答案:
1。为什么用应力 - 应变而不是力 - 位置定义材料的特性?
力 - 位置曲线取决于标本的大小和形状 - 较厚或更长的样品需要更大的力(并经历不同的位移),即使它是相同的材料。换句话说,力和位移是与几何相关的外部特性。
2。压力是什么?
当将外部载荷F应用于静态平衡中的连续,可变形的分量时,该组件会变形并发展内部力F',该内力F'与施加的载荷完全相反以维持平衡。假设F均匀分布在横截面A上,则单位区域的内部抵抗力称为应力,可以表示为:
应力具有压力单位(PA或N/m²),代表每单位面积的平均内力抵抗变形。这工程压力公式假设应力分布均匀;对于大变形或高度不均匀的负载,请使用真正的压力(基于瞬时区域)或全应力张量以进行精确分析。
3。什么是应变?
在施加的载荷下,材料变形。为了比较不同尺寸和形状的标本的变形,科学家引入了一种称为菌株的非二维度量,该方法量化了相对伸长。
对于原始长度l的元素0并改变长度Δl,工程压力定义为:
工程应变对于小变形(通常高达约5%)是简单而准确的。
对于大变形,例如金属形成或非线性FEA,您可以使用true(对数)菌株,这说明了不断变化的长度:
应力 - 应变曲线显示了材料在负载下的行为,这为材料的强度,刚度,延展性和故障限制提供了见解。
它通常是通过破坏性的单轴拉伸测试来测量的:标准化的“狗骨”或直杆标本在通用测试机(UTM)中夹住。机器以受控的常数速率应用负载,直到样品失败。在此过程中,UTM的负载电池测量了拉伸力F,而延长计(或视频/DIC系统)记录了定义量规长的轴向变形。力量与位移,因此工程压力与工程压力 - 连续记录。最后,您将力转换为压力(σ= f/a0)和位移到应变(ε=Δl/l0),然后在垂直轴上与水平轴上的ε绘制σ,以生成应力 - 应变曲线。
延性材料的应力 - 应变曲线由多个部分组成,这些部分反映了材料随着压力增加的反应方式。相比之下,脆性材料的曲线要简单得多 - 通常是直至断裂的直线。在下文中,我们将重点介绍延性材料的应力 - 应变行为。
曲线上有三个主要阶段和五个关键点:
弹性变形:遵循胡克定律,在曲线的最初部分,压力和压力完全成比例。在这里,材料的行为就像弹簧一样 - 避开了负载,并返回其原始形状。该线性区域的斜率是Young的模量,它可以量化材料的刚度。
应变硬化:在产量点(在某些钢中的任何短暂的压力下降或平稳)之后,材料进入应变阶段。塑性变形沿量规长度均匀地持续,并且随着位错的积累和相互作用,金属变得更强大,从而使进一步的滑动变得更加困难。因此,要继续变形样品所需的压力升高,直到达到最终的拉伸强度。
颈部:一旦材料达到其最终的拉伸强度,在一个区域中均匀的变形末端和“颈部”形成。从那时起,将进一步的塑料流动到脖子上需要少的力,因此工程应力(仍使用原始的横截面区域)落下直到样品最终骨折。
比例极限:在应力 - 应变曲线上的线性部分的末端,可以通过计算斜率从Young的模量中拉出。
弹性极限:变形仍然完全可回收的最高应力。在金属中,它几乎与比例极限一致。
产量点(屈服强度):永久变形开始的压力。它是通过在曲线的初始(弹性)部分平行的线平行的线发现而被发现的,但被抵消了0.2%的应变;该线与应力应变曲线的交点定义了屈服强度。
最终的拉伸力量:曲线上的峰值工程应力。除此之外,颈部开始了。 (注意:真正的压力一直在上升,直到断裂为止。)
断裂(断裂)点:曲线的末端,材料最终破裂。
弹性的模量:应力 - 应变曲线弹性部分下的面积,代表每单位体积的能量,材料可以吸收并释放而不会永久变形。这是设计弹簧,值得碰撞的结构以及必须弹性存储和返回能量的任何组件的关键参数。
韧性:应力 - 应变曲线下的总面积,该曲线量化了单位体积的能量在破裂前可以吸收的每一体积的能量。韧性指导选择材料,以进行抗冲击和冲击的应用,例如汽车碰撞结构和弹道装甲。
延性:通过断裂时的伸长来测量(骨折时量规长度的增加百分比)和降低面积(骨折处横截面面积的百分比降低),延展性测量材料在失败之前可能会变形多少。高延展性对于形成操作是有利的,而低延展性表明脆性骨折的风险更高。
工作硬化(应变硬化):产量后,真正的流动应力在均匀的塑料区域内随着塑性应变而保持上升。这种增强的扩散会更均匀地均匀,延迟颈部(更大的均匀伸长率),并改善金属形成(冲压,滚动,深色绘图)和FEA精度,以供回弹和变薄。
压力与应变曲线在材料家庭之间差异很大。如下图所示,它们可以将它们大致分为两类:脱骨和脆性。
延性材料,例如低碳钢,铝合金,铜和许多热塑性塑料,具有多阶段的应力 - 扭曲曲线:初始线性(弹性)区域,明显的屈服点,菌株硬化(均匀的塑料)区域,颈部,颈部和最终的伸长率后,最终是断裂的。它们可以在失败之前吸收大量能量。
易碎的材料,例如铸铁,大多数陶瓷,玻璃和混凝土,几乎没有塑料区域的裂缝表现出纯粹的线性弹性行为,因此它们的比例极限,最终的拉伸强度和断裂强度重合。
请注意,上面显示的曲线仅代表那些特定的材料条件。实际的应力应变行为可以随成分,热处理,微结构,温度,应变率以及其他测试或处理参数而显着变化。
工程和真实的应力 - 应变曲线是提出拉伸测试数据的两种最常见方法。
在标准的拉伸测试中,我们假设样品的横截面停留在其原始区域a0。因此,工程压力定义为:
和工程压力为:
当您施加载荷时,曲线通过弹性区域线性上升,然后将屈服点延伸至均匀的塑性变形,在最终的拉伸强度下达到其峰值,标记了均匀伸长的末端。除了这个峰外,颈部将变形浓缩到一个狭窄的部分。因为工程压力仍然除以原始区域0,即使真正的应力(基于收缩区域)继续攀升,绘制的应力值也会下降。因此,工程曲线(在图中显示为红色)在UTS之后下降,并向下趋势直至断裂。
如果您说明瞬时区域我在每个负载步骤中,您都会得到真正的压力:
和真(对数)菌株:
在颈部期间,横截面降低的速度快于施加的载荷掉落。t继续超越工程最终的拉伸强度。因此,真正的应力 - 应变曲线会稳步增加至断裂,而不会在其峰值之后下降。
工程压力和应变是材料数据表中报告的标准数据,并用于设计代码。它们可以快速访问熟悉的特性,例如屈服强度,最终的拉伸强度和休息时伸长率,从而易于比较材料,设定安全因子并确保整个生产批次的质量控制一致。
真正的应力和应变是非线性有限元分析和组成型模型的关键输入。通过通过大型塑料应变反映实际材料的响应并将其缩成颈部,它们可以准确模拟形成过程(例如,冲压,锻造,挤出),精确的回弹预测以及可靠的零件定位和最终失败的可靠预测。
应力 - 应变曲线是必不可少的工具,可将材料行为与结构性能联系起来。它通过提供弹性模量,屈服强度,韧性和延展性数据来为设计提供信息,以尺寸和合格组件。它还通过定义计算形成力,工具几何形状和预期回弹所需的应力应变路径来指导制造。
在Chiggo,我们将这些物质见解应用于整个服务,CNC加工and 3D printing to 钣金制造,我们很高兴为您的下一个项目提供免费报价和专家指导。
终极拉伸强度(UTS)是材料破裂前可以承受的最大应力的度量。通常通过进行拉伸测试并记录工程应力与应变曲线的情况。作为一项密集的特性,UTS对于比较张力下的材料的性能至关重要。它可以帮助工程师为必须抵抗拉伸负荷而不会失败的结构和组件选择合适的材料。
想一想金属汤匙。如果您在手柄上轻轻按下,它会弯曲一点,但放手后立即弹回。不过,更努力地推动,勺子会永久弯曲。那时,您已经超越了汤匙的屈服强度。在本文中,我们将探讨屈服强度的含义,与相关思想(如拉伸强度和弹性限制)进行比较,以及为什么在现实世界中它很重要。我们还将研究影响强度和常见材料的典型值的因素。 什么是屈服强度? 屈服强度是材料开始永久变形的应力水平。简而言之,这是材料停止反弹(弹性行为)并以无法完全逆转的方式弯曲或伸展的点。在屈服强度以下,当您卸下力时,材料恢复为原始形状(就像弹簧可以追溯到其长度)。超过屈服强度,材料永远改变了:它已经屈服了,这意味着它已经经历了塑性变形。 为了更好地理解这一点,让我们分解两个关键术语:压力和压力。应力是将力施加到材料除以其横截面区域的材料,或仅仅是材料内部力的强度。您可以将其视为压力,但压力描述了内部反应而不是外部推动。应变是材料在响应中的变化多少,计算为长度的变化除以原始长度。当我们策划压力抵抗压力时,我们会得到一个应力 - 应变曲线这显示了材料随着负载的增加的表现。 在应力 - 应变曲线的早期,材料的行为表现:压力和应变是成比例的(根据Hooke定律的直线),一旦去除负载,材料就会恢复其原始形状。该区域的末端是弹性限制 - 占地,某些变形仍然是永久性的。屈服强度标志着从弹性行为到塑性行为的转变,并定义了可逆变形和不可逆变形之间的边界。 对于许多延性金属,例如低碳钢,这种过渡是逐渐而不是锋利的。为了始终定义屈服强度,工程师经常使用0.2%的偏移方法:他们绘制一条平行于曲线弹性部分的线,但变为0.2%应变。该线相交曲线的点被视为屈服强度。这提供了一种实用,标准化的方法,即使不存在明显的产量点,也可以测量屈服强度。 屈服强度与拉伸强度 正如我们所定义的那样,屈服强度是材料开始永久变形的压力。拉伸强度(通常称为终极拉伸强度(UTS))是材料破裂之前可以承受的最大压力。一旦达到该点,材料将不再承担额外的负载,并且很快就会裂缝。 两者都描述了材料对压力的反应,但它们代表不同的限制:屈服强度标志着永久变形的开始,而拉伸强度则标志着断裂点。例如,在拉动钢棒时,它首先会弹性伸展。超越屈服强度,并实现永久伸长率。继续前进,直到达到拉伸强度为止,杆最终将抢购。 在实践设计中,工程师更多地专注于产量强度,因为组件必须保持功能,而不会造成持久损坏。拉伸强度仍然很重要,但通常标志着失败条件永远不会在服务中发生。 除拉伸强度外,屈服强度还经常与其他两个概念相混淆: 弹性极限:弹性极限是材料可以承受的最大应力,一旦去除负载,仍将完全返回其原始形状。低于此极限,所有变形都是弹性和可逆的。在许多情况下,弹性极限非常接近屈服强度,因此两者通常被视为相同。尽管弹性极限标志着精确的物理边界,但屈服强度提供了标准化的工程值,可以始终如一地测量并用于安全设计。 比例极限:该术语来自应力 - 应变曲线的线性部分。比例限制是遵循胡克定律的压力和压力直接比例增加的点。它通常发生在弹性极限和屈服强度之前。在这一点之外,曲线开始弯曲 - 尽管材料仍然具有弹性,但这种关系不再是完美的线性。 影响力强度的因素 屈服强度无法保持固定 - 它可以根据几种物质和环境因素而改变。这是一些最常见的: 材料组成(合金元素) 金属的构成对其产量强度产生了重大影响。在金属中,添加合金元素可以使它们变得更坚固。例如,当添加碳,锰或铬等元素时,钢的强度也会增强 - 尽管碳也更脆。铝合金从铜,镁或锌等元素中获得强度。这些添加物在金属内部产生了微小的障碍,从而阻止了位错运动(塑性变形的原子级载体),从而提高了强度。简而言之,金属的“食谱”可以使弯曲更难或更容易。这就是为什么苏打中的铝易于柔软而柔软的,而飞机机翼中的铝(与其他金属混合在一起)具有更高的屈服强度。 晶粒尺寸(微观结构) 通常,较小的晶粒意味着更高的强度,这是霍尔 - 格什关系描述的趋势。原因是晶界充当脱位运动的障碍,因此更细的谷物会产生更多的障碍,并使金属更强壮 - 到达一点点。冶金学家通过控制的固化或热机械处理来完善晶粒尺寸。例如,许多高强度的钢和超合金用非常细的晶粒设计以最大化屈服强度,而晶粒非常大的金属往往更容易产生。 热处理 金属加热和冷却的方式可以改变其结构,从而改变其屈服强度。退火(缓慢加热和冷却)软金属,降低其屈服强度,并通过缓解内部应力来使其更具延展性。淬火(在水或油中快速冷却)将结构锁定到坚硬的,压力的状态,大大提高了屈服强度,但也使金属变脆。为了恢复平衡,淬灭通常是回火,一个适度的加热步骤,可改善韧性。 通过选择正确的热处理,制造商可以根据应用使金属更难或更柔软。例如,对弹簧钢进行处理以达到高屈服强度,因此它可以弯曲而不会变形,而钢丝首先要退火以易于塑形,然后再加强。 制造过程(冷工作) 如何机械处理材料也可以改变其屈服强度。冷工作(在室温下变形金属,例如冷滚动或冷图)通过称为工作硬化的机制提高了强度。当您将金属变形时,您会在其晶体结构中引入错位和纠缠,这使得进一步变形更加困难 - 实际上,金属随着变形而变得更强壮。这就是为什么在热卷(不工作)条件下,冷滚动钢通常比同一钢具有更高的屈服强度。 温度和环境 根据经验,大多数金属在高温下会失去屈服强度。热使金属变软,因此可以用较小的力变形。在非常低的温度下,有些材料变得更加脆弱。它们塑性变形的能力降低了,因此尽管屈服应力在技术意义上可能会增加,但它们比产量更有可能破裂。 诸如腐蚀或辐射等环境因素也会降解材料。腐蚀会产生凹坑或减少横截面区域,从而有效减少结构在屈服之前可以承受的负载。例如,生锈的钢梁在载荷下可能会产生的厚度比未腐蚀的束较低,因为其有效厚度会降低,并且来自锈蚀的微裂缝会浓缩压力。 产量不同材料的强度 应力 - 应变曲线提供了一种简单的方法来比较不同材料对负载的反应方式。在上图中,我们可以看到四个典型的行为。随着压力的增加,每个反应都不同,其屈服强度反映了这些差异。 脆性材料:脆性材料,例如玻璃或陶瓷,几乎没有塑性变形。他们沿着几乎直线直线直至突然断裂。他们的屈服强度非常接近他们的最终力量,因为他们并没有真正“屈服” - 它们中断。 强但不是延性材料:某些材料(例如高强度钢)可以承受高应力,但显示有限的延展性。它们具有很高的屈服强度,这意味着它们可以很好地抵抗永久性变形,但是在破裂之前并没有伸展太多。 […]
精密加工是一个关键的制造过程,可通过使用最先进的CNC机器产生具有极高尺寸公差和优越表面饰面的组件。这些零件不仅是为了形状而设计的,而且还用于可靠的功能,精确的拟合和可重复性。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español