聚丙烯(PP)和丙烯腈丁二烯苯乙烯(ABS)是现代制造中使用最广泛的两种热塑性塑料。两者都是负担得起的,可回收的,并且可以很好地合作CNC加工,注射成型和工业3D打印。尽管它们相似,但PP和ABS在化学结构,机械性能和环境性能方面有显着差异。本指南提供了详细的,并排的比较,可帮助您选择适合特定应用的合适塑料。

聚丙烯(PP)是通过丙烯单体聚合产生的化学式(C3H6)N的半晶热塑性聚合物。它自然是半透明的乳白色,具体取决于其成绩和加工。 PP的密度低,对酸,碱和许多有机溶剂具有高度抗性。它具有出色的抗疲劳性,良好的冲击强度和非常低的水分吸收。在熔点相对较高的情况下,PP可以承受间歇性的高温而不会变形。
聚丙烯(PP)在两种主要类型上可用:

丙烯腈丁二烯苯乙烯(ABS)是一种无定形的热塑性聚合物,通常不透明具有象牙外观。它最常通过乳化过程产生,由三个单体组成,即丙烯腈,丁二烯和苯乙烯 - 贡献了独特的特征:
ABS由于其无定形性而没有固定的熔点,但在105°C(玻璃过渡温度)左右软化。通过添加耐热修饰符,可以提高其耐热性。 ABS具有出色的机械强度,抗冲击力和尺寸稳定性。虽然它不是自然透明的,但可以轻松修改ABS以产生充满活力的彩色部分。它还支持后处理技术,例如绘画,电镀和粘合性粘合,以进行多种美学和功能处理。

PP是从单个单体丙烯(C₃H₆)合成的半晶聚合物。它提供高刚度,非常低的水分吸收和出色的耐化学性。商业等级有时会纳入多达5%的乙烯联盟者,以提高影响力。
ABS是一种无定形的培训,由15–35%的丙烯腈,5-30%丁二烯和40-60%的苯乙烯组成。这种设计的混合物可提供平衡的强度,尺寸稳定性和高质量的表面饰面,使其非常适合需要紧张的公差和优质外观的应用。
下表比较了这两种塑料的典型材料特性:
| 财产 | pp | 腹肌 |
| 密度 | 0.90-0.92 g/cm³ | 1.03–1.07 g/cm³ |
| 熔点 | 160–170°C | 无定形,没有真正的熔点 |
| 玻璃过渡温度 | 〜 -10°C | 〜105℃ |
| 热偏转温度(0.45 MPa) | 85–100°C | 95–105°C |
| 导热率 | 0.10–0.22 w/mk | 0.17–0.19 w/mk |
| 抗拉强度 | 30–40 MPA | 40–50 MPA |
| 弯曲模量 | 1200–1600 MPA | 1800–2300 MPA |
| 缺口IZOD冲击力量 | 20–100 J/m | 200–500 J/m |
| 休息时伸长 | 200–600% | 20-50% |
| 疲劳性抗性 | 出色的 | 缓和;可能在重复的循环负载下破裂 |
| 硬度(罗克韦尔) | 60-80r | 80-100R |
| 耐化学性 | 出色的;抵抗酸,碱,脂族碳氢化合物,醇 | 缓和;容易受到酮和芳香溶剂的影响 |
| 耐水性 | <0.01%(几乎是防水) | 0.2–0.4% |
| 紫外线阻力 | 贫穷的;需要户外使用紫外线稳定器 | 贫穷的;需要保护性涂料或替代材料以户外使用 |
| 加工性 | 易于霉菌,挤出和热形一个 | 易于塑造,机器和完成 |
| 饰面和美学 | 略带蜡状的感觉;有限的油漆粘附 | 光滑,高光饰面;出色的油漆粘附 |
PP明显轻巧;它的密度低于1g/cm³,它是少数数量(PE)的商业热塑料之一,其密度低于水。但是与PE相比,PP提供了更高的刚度,更好的耐热性和出色的疲劳寿命。
ABS的密度较高1.03–1.07g/cm³,这会导致较重的部分,增加材料使用,没有浮力。
PP的熔点为160–170°C,使其可以在相对较高的温度下保留其固体形式。这使得PP适用于沸腾灭菌和微波安全容器等应用。但是,其玻璃过渡温度(TG)约为-10°C,因此在冰点附近或以下的温度下可能会变得脆弱。相反,ABS没有真正的熔点。取而代之的是,它逐渐在其TG上逐渐软化约105°C,其机械性能显着恶化。
HDT反映了材料在负载下保持形状的能力。 ABS通常会抵抗最高95-105°C的变形,而PP的HDT较低约为50–70°C,这取决于结晶度和配方。尽管PP的熔点(160-170°C)要高得多,但其较低的模量导致其在较低温度下的负载下变形。在没有机械应力的应用中,PP可以耐受高达〜130°C的短期温度,使其适用于热填充包装和微波安全容器。
ABS通常以刚度和拉伸强度优于PP,其拉伸强度(40–50MPA对30-40MPA)和弯曲模量(1800–2300MPA vs. 1200–1600MPA)具有较高的抗议值。结果,ABS更加刚性,更适合需要承载能力和形状保留的结构应用。虽然PP的强度略低,但它提供了高强度的比率,并且通常用作轻便替代品的重量替代品工程塑料。
在抗冲击力方面,ABS的表现异常很好,并在低温下保持韧性至–40°C左右。相反,在接近或低于其玻璃过渡温度为-10°C的温度下,PP变得越来越脆弱。
但是,PP在疲劳性抗性和反复弯曲中脱颖而出。例如,PP生活铰链可以忍受数百个开放和关闭的周期而不会破裂。相比之下,ABS反复弯曲时更容易破裂。
PP具有出色的化学稳定性;它可以抵抗最常见的酸,碱和广泛的有机溶剂,即使在长期暴露下也是如此。这使得PP成为化学容器,室外产品和经常与油脂或油接触的组件等应用的更安全,更可靠的选择。
ABS具有更有限的耐化学性。它可以被某些有机溶剂(例如丙酮,甲基乙基酮(MEK)和乙酸乙酯)攻击或溶解。但是在大多数日常环境中,ABS仍然稳定,例如淡水,温和的酸和碱以及酒精。因此,ABS仍然适用于一般家庭,消费者和电子应用;但是,它应该远离高度腐蚀性物质。
另一个关键因素是吸水。 PP实际上是水不渗透的,因此即使被淹没,它的尺寸和机械强度也保持稳定。相比之下,ABS略有吸湿性(吸收0.2-0.4%);虽然适度,长时间暴露于高湿度环境可能会导致较小的维度变化和电性能的轻微降解。
PP和ABS均通常用于注射成型:ABS具有中等的熔体粘度,出色的霉菌填充能力和低收缩率,使得很容易产生复杂的精密零件。相比之下,PP会在冷却方面进行更多的缩小 - 如果不仔细控制模具设计和处理参数,则零件会扭曲并失去尺寸精度。因为PP的结晶是放热的,并且快速冷却,厚壁的部分通常会不均匀且变形,因此通常优选ABS,对于高精度组件或大型平板板。
在3D打印中,ABS在受控的环境中很容易打印,提供了良好的维度准确性和强度,而PP的高收缩量和对标准构建平台的粘附不良使得容易扭曲和脱离。
两种材料都可以挤压成空心的形状,但是PP在纤维旋转(例如编织的麻袋,地毯纤维)和薄膜挤出(例如食品包装膜)中表现出色 - 超出ABS触及的应用。相反,ABS机器具有标准切割工具,而PP的高韧性通常会导致工具挠度,热量积聚和材料粘附,从而使精确加工更具挑战性。

ABS提供更大的美学多功能性。它可以轻松地支持绘画,电镀和粘合剂粘合,并可以实现从磨砂到高光泽度的各种表面饰面。 ABS在成型过程中还可以很好地接受颜料,从而允许一致的着色和视觉吸引人的零件。
相比之下,PP具有蜡状,低表面的能量质地,除非经过表面处理(例如火焰,电晕或等离子体激活),否则可以抵抗绘画和粘合。虽然PP可以在复合过程中进行颜色,但其表面并不适合二级精加工,这限制了其在需要精制外观或装饰饰面的应用中的使用。
PP是一种广泛产生的商品塑料,单位成本非常低。在常见的塑料树脂中,PP的成本通常高于ABS,尽管这可能会随市场波动而变化。这使PP成为大型生产的高度成本效益的选择。
ABS被认为是通用工程塑料。它提供了更好的总体性能,但价格更高。对于高性能等级(例如阻燃或增强ABS)的成本增加,但对于增强的机械或美学性能仍然可以接受。
总之:
| 如果需要,请选择PP | 如果需要,请选择ABS |
| 低成本和轻巧的性能 | 高刚性和影响力 |
| 对化学物质和水分的极好耐药性 | 精确的公差和尺寸稳定性 |
| 重复弹药应用(例如,生活铰链) | 表面饰面适合绘画或镀镀 |
| 食品接触或可热动物的成分 | 美学,结构性零件供室内使用 |
| 可耐水的室外就绪零件 | 精确销售的组件需要一致的化妆品质量 |
PP的低成本,化学和耐水性以及出色的疲劳寿命,使其非常适合大量,灵活使用的应用,例如包装,液体储层,医疗装饰物和室外产品。 ABS具有优越的强度和表面质量,是结构上关键或视觉上苛刻的零件的首选材料,包括汽车内部,电子外壳,设备和精密成分。
在Chiggo,我们做的不仅仅是物质比较。我们可以帮助您将材料优势转变为现实世界中的成功。拥有十多年的CNC塑料加工体验,我们不仅提供零件,而且提供精度,性能和合作伙伴关系。今天伸出手开始呢
在加入工程和施工中的材料时,无疑是最广泛使用的两种方法。在金属制造中,这两种技术经常相互称重,以确定哪个是连接定制钣金零件的更好选择。它们之间的决定并不总是直接的,因为必须考虑多个因素,包括材料兼容性,关节强度要求,环境条件以及拆卸或灵活性的需求。
想象一下,将您最喜欢的咖啡杯放在厨房的地板上 - 它变成锋利的碎片。现在,秋天后,想象一下智能手机屏幕蜘蛛网,或地震期间未增强的混凝土墙破裂。这些日常示例突出了脆性,这是一种物质属性,可以导致突然破裂而不会警告。 Brittlenes对安全性和可靠性至关重要:建筑物,桥梁或产品中的脆性组件如果不考虑灾难性的情况。历史提供了鲜明的提醒 - 最著名的是RMS泰坦尼克号,其钢铁在冰冷的大西洋水域变得脆弱,并在撞击而不是弯曲方面破裂,导致了灾难。工程师和设计师密切关注Brittleness,因为与弯曲或伸展的延性材料不同,脆性易碎的材料往往会在压力下折断。 这篇文章探讨了什么是脆性以及它与硬度和韧性的不同。它还解释了为什么玻璃或铸铁等材料是脆性的,以及我们如何测试和减轻工程设计中的脆性。 什么是脆性? 材料科学中的脆弱性是指材料事先几乎没有塑性变形的材料倾向的趋势。简而言之,脆性材料不会弯曲或伸展太多 - 它会破裂。如果您尝试弯曲脆性物体,它几乎会立即破裂或捕捉,而不是经历塑性变形。这是相反的延性,在失败之前,材料维持明显的塑性变形(例如,将其吸引到电线或弯曲中)的能力。高度延展的金属(例如铜或金)可以大量弯曲,拉伸或抽出,而在仅弹性菌株后,脆性材料(例如玻璃或陶瓷)骨折。 脆性,韧性,韧性和硬度 比较脆性和延展性归结于材料在骨折前可以变形的材料多少。脆性材料的延展性很低,并在小应变下达到其断裂点。延性的一个可以维持明显的塑性变形。在金属中,一个共同的经验法则是,休息时的伸长率通常称为脆,而考虑〜5%延性(材料和测试依赖性;陶瓷和玻璃通常远低于1%)。实际上,脆性材料几乎没有发出警告 - 在折断之前,它们不会明显弯曲或脖子。在应力 - 应变曲线,延性材料显示出屈服和较长的塑料区域,而脆性材料几乎是线性弹性的,直到突然裂缝具有最小的可塑性。 韧性描述材料在破裂前吸收的能量(思考:应力 - 应变曲线下的区域)。当材料结合高强度和良好的延展性时,通常会增加。这不是严厉的“相反”。橡胶轮胎很艰难,因为它会变形并吸收影响。退火玻璃很脆,因为它不能塑料变形,因此急剧的打击会使它破裂。 硬度是一个不同的概念 - 它抵抗刮擦和局部凹痕。材料可能非常困难但脆弱。例如,钻石抵制刮擦,但缺乏可塑性,可以在急剧的打击下切碎或劈开。相反,相对柔软的东西(例如橡胶)可以抵抗撞击的破裂,因为它会变形。简而言之,硬度涉及对局部变形的抵抗力,而残酷的性质描述了断裂行为。 易碎材料的示例及其失败 许多日常和工业材料表现出脆弱的行为。以下是一些例子,以及它们如何在压力下失败: 玻璃:普通玻璃(例如窗玻璃或水杯)是一种经典的脆性材料。它在压缩方面非常坚固且强烈,但是在拉伸应力或影响下,它不能塑性变形。将玻璃杯放在坚硬的地板上,通常会碎裂大而尖锐的碎片。故障是通过裂纹传播的:一旦一个微小的缺陷或冲击点会引发裂缝,它就会穿过玻璃,几乎没有塑性变形。这种脆性来自其结构:二氧化硅网络是刚性和无定形的,与金属不同,没有移动位错来缓解压力。有趣的是,特殊治疗可以改变玻璃断裂的方式,例如,通过热处理以引入表面压力应力而产生的钢化玻璃,仍然很脆,但往往会分解成小钝骰子样的碎片(因此“安全玻璃”)。层压玻璃,用于挡风玻璃,将两个玻璃杯粘合到塑料层中(通常是PVB),因此,当裂缝形成裂缝时,层中层将碎片将碎片固定在一起。这些治疗方法可以减轻故障模式,但从根本上讲,玻璃通过破裂而不是弯曲而失败。 陶瓷:陶瓷同样脆弱。从架子上敲出陶瓷花瓶,它会碎片或破碎而不是凹痕。从结构上讲,陶瓷是离子和/或共价键合的,通常是多晶(瓷器也包含玻璃相)。例如,在瓷板中,原子晶格是刚性的。当压力时,原子飞机无法轻易滑落。在离子固体中,一个小移位带来了同样的带电离子并排,它们强烈排斥,裂纹引发。由于位错运动是有限的,键是定向的,因此陶瓷具有高硬度和抗压强度,但倾向于在张力或弯曲下折断。当它们失败时,裂缝表面通常会清洁并沿晶体平面(裂解)。陶瓷瓷砖超出其容量超出其容量的裂纹,可以通过身体传播,并用干净的玻璃状断裂破裂,几乎没有可见的屈服。 铸铁(尤其是灰色铸铁):铸铁是一种金属,但某些成绩却是脆弱的。如果您曾经看过旧的铸铁发动机块或铸铁管道裂缝,则目睹了易碎的断裂。灰色铸铁(以其断裂表面的灰色命名)具有相对较高的碳含量。碳形成石墨片,分布在整个铁基质中。这些薄片的行为就像内部裂缝和强烈的压力集中器,因此金属在破裂之前不会伸展太多。结果,铸铁在压缩方面非常强(均匀支撑时),但在张力或影响不足可能会突然失败。相比之下,延性(结节性)铁是一种改良的铸铁,在该铸铁中诱导石墨形成球形结节(通常是通过镁处理)。它的脆性要小得多,并且会在影响下变形,而不是破碎。我们将在“设计”部分中进一步讨论。 具体的:混凝土看起来像是坚固且岩石状的(而且是),但这是脆弱材料的另一个例子。在压缩下,混凝土非常强大,可以承受很大的负载。但是,在张力(拉或弯曲)下,纯混凝土裂缝很容易。水泥糊和硬矿物聚集体的混合物形成了具有非常有限的塑料流能力的刚性基质,因此很小的拉伸菌株开放的微裂纹可以迅速合并。这就是为什么钢筋混凝土如此普遍的原因:钢钢筋嵌入以携带张力并增加延展性(和韧性)。钢可以屈服和伸展,将截面保持在一起并提供警告(裂缝形成并逐渐扩大),而不是突然的脆性崩溃。 其他脆性材料:还有许多其他例子。如果不调和,高碳或高度硬化的工具钢可能会变脆。文件或非常坚硬的刀片可能会在弯曲时捕捉,因为更高的碳和硬度可减少延展性。石墨,就像铅笔“铅”一样脆弱:其分层结构使飞机滑动留下标记,但在适度的力下,棍子很容易折断。有些聚合物也很脆。聚苯乙烯(用于一次性餐具和旧CD案例中的刚性塑料)倾向于捕捉而不是弯曲。 为什么有些材料脆弱? 要了解脆性,它有助于查看微观和原子尺度上的材料内发生的情况。材料的原子键和微观结构有所不同,这些差异决定了它们对压力的反应。 在结晶金属中,定位的金属键合和移动位错通常会造型流动。当滑动很容易时,应力再分配和裂纹尖端会钝化。如果粘结是高度定向的,或者晶体几乎没有可操作的滑动系统,则可塑性受到限制;应力集中到裂纹成核并繁殖。 然后,微观结构决定裂纹的生长是如何生长的。尖锐的夹杂物,硬第二阶段,毛孔或弱接口充当裂纹的发射地点和途径。温度和应变速率也很重要:较低的温度或更高的应变速率降低了可塑性,将行为推向脆性断裂。环境可以使平衡 - 原子氢加速裂纹,而晶粒结合的降解(例如晶间腐蚀或杂质隔离)可降低沿边界的凝聚力。 简而言之,当塑料适应不足并占主导地位时,勃彩会出现。如果材料无法自由移动脱位或在裂纹尖端下消散能量,则失败是突然的,几乎没有警告。 如何测量或测试脆性? 由于Brittlense是关于材料在压力下的行为(几乎没有变形),因此没有一个“勃贴”数字,您可以像密度或熔点一样抬头。取而代之的是,工程师使用延展性,断裂韧性和影响能量的测试间接表征它。 衡量脆性行为的标准方法之一是拉伸测试。在记录压力和应变时,拉动狗骨标本,以产生应力 - 应变曲线。脆性反应是几乎线性的突然断裂的弹性途径,几乎没有或没有产量区域。两个快速指示器(突破时的延长和降低面积)是延展性的度量(并成反比)。脆性的材料将显示出低伸长率和最小的面积减少(颈部很少或没有颈部)。对于金属,测试设置和报告遵循ASTM E8。 在Charpy V-Notch撞击测试中,摇摆的摆板击中了一个缺口的杆,并且在焦耳的能量中记录了摆能量的损失(来自秋千高度的变化)(j)。低吸收能表示脆弱的反应。高能量表示韧性。由于结果取决于标本的大小和缺口几何形状,因此最好将夏普能量用于比较和温度研究,而不是基本材料常数。在多个温度下进行测试映射延性到脆性的过渡。工程师还阅读了断裂表面:明亮,刻面/裂解特征表明脆性断裂,而暗淡,纤维状的外观表示延性断裂。 另一个关键措施是平面应变骨折韧性(K我知道了),一种骨折的机电参数,可量化材料对裂纹生长的抗性。它是根据预先裂纹标本的精确测试确定的,代表裂纹开始延伸的临界应力强度因子。脆性材料有低k我知道了因此,缺陷差 - 小裂纹会在相对较低的压力下导致失败,而坚韧的延性材料具有较高的k我知道了并且可以直言不讳或逮捕裂缝。工程师使用裂缝 - 阻力数据来设置允许的缺陷大小,并针对服务突然断裂进行设计。 如何防止设计中的脆弱失败 由于脆弱性会导致突然的灾难性失败,因此工程师已经制定了处理策略 - 通过选择不同的材料或修改材料和设计以使脆弱行为降低危险性。 材料选择和处理 […]
弹簧是机械部件,旨在在压缩、拉伸或扭曲时存储和释放能量。它们通常由钢或特种合金等材料制成,并通过卷绕、热处理、磨削、涂层和精加工等工艺制造。弹簧具有多种用途,例如减震、减振和机械中的受控运动。此外,它们还是日常生活中不可或缺的多功能组件,可实现汽车悬架的平稳行驶、钟表的精确计时以及家具的舒适性和支撑性。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español