聚酰胺是所有包含酰胺键的聚合物的一般项。尼龙最初是杜邦(Dupont)为工业和消费者应用开发的合成聚酰胺PA6和PA66的商标。尽管尼龙是聚酰胺的子集,但两个术语并不完全可互换。在本文中,我们将探讨聚酰胺和尼龙之间的关系,并详细比较其关键特性和性能。

聚酰胺(PA)是一类高分子量的聚合物,其重复单元与酰胺(-co-NH-)键相连。聚酰胺可以是天然的或合成的。天然聚酰胺包括羊毛,丝绸,胶原蛋白和角蛋白。合成聚酰胺可以分为三类:
脂肪族聚酰胺(PA6,PA66,PA11,PA12):非常适合通用工程。他们平衡力量,韧性,耐磨性和以合理的成本处理易于处理。
芳族聚酰胺(例如Kevlar®和Nomex®):最适合极端性能。像Kevlar®之类的Para-aramids具有出色的拉伸强度和切割的电阻,而Nomex®之类的元弧菌则以固有的火焰抗性和热稳定性而珍贵。它们很昂贵且不融化,因此零件形状和制造路线更有限。
半芳族聚酰胺(PPA,PA6T,PA6/12T):针对高温工程。它们在升高的温度下保持刚度和尺寸,并很好地处理许多汽车液。它们可以进行融化处理(注入/挤出),但在较高的熔体温度下运行,需要仔细干燥。成本位于脂肪族PA和芳香虫之间。
它们具有增加的结晶度,良好的热和耐化学性,并且由于分子链之间的氢键而引起的水分吸收趋势,尽管这些特性的程度因类型而变化很大。它们的机械性能(拉伸强度,弹性模量,断裂时伸长)与链刚度和结晶性紧密相关:这些材料越高,材料的更硬且越强,但也越脆。较低的值会导致更柔软,更坚固的材料。
以下是最常见的合成聚酰胺等级,其关键特性和典型应用的摘要。
| 年级 | 通用名称 | 单体 | 碳计数 | 聚合 | 拉伸强度(MPA) | 弹性模量(GPA) | 熔化温度(°C) | HDT(°C,干,1.8 MPa) | 吸收水分(%) @50%RH | 耐化学性 |
| PA6 | 尼龙6(合成) | Caprolactam(ε-Caprolactam) | 6 | 开环聚合 | 60–75 | 1.6–2.5 | 220–225 | 65–75 | 2.4–3.2(〜9–11%饱和) | 良好的油/燃料耐药性;对强酸/碱敏感 |
| PA66 | 尼龙6,6 | 六甲基二胺 +脂肪酸 | 6+6 | 缩聚 | 70–85 | 2.5–3.0 | 255–265 | 75–85 | 2.5–3.5(约8–9%饱和) | 与PA6相似,抗溶剂抗性稍好 |
| PA11 | 基于生物的聚酰胺 | 11-氨基酸酸 | 11 | 自调 | 50–65 | 1.2–1.8 | 185–190 | 55–65 | 1.5–2.0 | 优异的耐化学性,盐喷雾,耐燃料 |
| PA12 | 长链聚酰胺 | Lauryl lactam | 12 | 开环聚合 | 45–55 | 1.6–1.8 | 178–180 | 50–60 | 0.5–1.0 | 类似于PA11;出色的耐化学性 |
| PA46 | 高温聚酰胺 | 四甲基二氨酸 +脂肪酸 | 4+6 | 缩聚 | 80–100 | 3.0–3.5 | 〜295 | 160–170 | 2.0–3.0(饱和时较高) | 出色的高为高温,油和耐磨性 |
| 凯夫拉 | para-aramid | p-苯基二胺 + terephathaloyl氯化物 | - | 缩聚 | 3000-3600 | 70–130 | 没有融化;分解> 500°C | 保留最大〜300°C的性能;分解> 500°C | 3–7(水分恢复 @65%RH) | 对大多数化学物质的抵抗力;紫外线敏感 |
您可以通过简单的动手测试来快速筛选聚酰胺 - 开始进行燃烧测试(它们融化,然后用黄色的蓝色火焰燃烧,散发出类似芹菜的气味,并留下坚硬的黑色珠子)或热针测试(它们用相同的气味柔软地柔软地软化)。请注意,PA6/PA66(密度约1.13–1.15 g/cm³)沉入水中,而PA11/PA12(≈1.01–1.03 g/cm³)等长链等级可能会漂浮在水中或稀释酒精。对于确定的实验室ID,请使用FTIR光谱检测特征性N – H伸展(〜3300cm⁻为)和C = O strave(〜1630cm⁻⁻),并使用DSC确认熔点(PA12≈178°C,PA6≈215°C,Pa666 ≈26〜26〜26Y≈2600°C)。

尼龙是合成聚酰胺最著名的子集。实际上,当人们在塑料或纺织品中说“聚酰胺”时,几乎总是指尼龙型材料。
最广泛的商业广告尼龙 - 像尼龙6,尼龙6/6,尼龙11和尼龙12一样,是脂肪族聚酰胺。他们的半晶微观结构和牢固的氢键结合使它们具有强度,韧性,耐磨损性以及良好的热量和耐化学性能的一般工程。它们可以通过多种传统制造和添加剂技术来处理多功能且可靠,使其成为长期以来的主食工程塑料。
总体而言,用于鉴定尼龙和聚酰胺的方法(在现场和实验室中)基本相同。主要区别在于,尼龙等级需要更精确的标准才能准确区分。在实验室环境中,差异扫描量热法(DSC)通常用于测量熔点并查明特定等级。密度测试提供了一种将长链尼龙(PA11/PA12)与短链尼龙(PA6/PA66)分开的快速方法。当需要进一步确认时,可以应用诸如X射线衍射(XRD)或熔体流速(MFR)分析之类的技术,以更高精度将6系与11/12系列材料区分开。
“聚酰胺”和“尼龙”通常可以互换使用,尽管尼龙只是一种类型的聚酰胺。本节详细介绍了他们的共同属性。
聚酰胺的特征是在其主链中重复酰胺(-co-NH-)键,但可以从许多单体中合成。脂肪族聚酰胺是由直链单元(例如ε-丙二酰酰胺,六甲基二胺与脂肪酸或11-氨基酸苯甲酸)建造的,而芳香族芳香族将刚性芳族掺入链中。单体的选择和聚合方法决定了链的柔韧性,结晶度和氢键密度,这反过来影响机械强度,热稳定性以及对油,燃料和许多化学物质的耐药性。
尼龙是由窄单体组制成的脂肪族聚酰胺的子集。常见的尼龙等级包括PA6,由ε-丙二烯酰胺和PA6,6制成的PA6,由用脂肪酸冷凝六甲基二胺产生。它们均匀的链条段和牢固的氢键创建了一个半晶网络,可提供拉伸强度,韧性,耐磨性和适度耐热性的平衡组合。
聚酰胺(包括尼龙的)熔点由四个主要因素决定:单体化学结构,结晶度,氢键密度和链柔韧性。通常,更多且定期间隔的氢键和更高的结晶度提高了熔化温度。相反,破坏晶体形成的柔性链节降低了熔点。例如,在178–180°C左右融化的长链,低结晶聚酰胺,例如PA6和PA6/6之间的常见尼龙和大约215°C和265°C之间的常见尼龙,以及刚性芳香族聚酰胺(例如Kevlar)在大气压下不融化,而在大气压力下则融化,而不是在高于50000000000000000000000000000000000000000°乐的压力下。
通常,尼龙提供了强度和韧性的平衡组合,而其他聚酰胺提供了更广泛的性能调整。在高强度端,诸如Kevlar®之类的芳香芳烃达到了纤维抗拉的强度,高达约3.6 GPa(〜3600 MPa),并在弹道影响下具有excel能量吸收。另一方面,PA11和PA12(PA12)的长链脂肪族聚酰胺一些拉伸强度(〜45-60 MPa)以获得出色的延展性和高影响力。常见的尼龙(PA6和PA6,6)位于中间,提供约60–85 MPa的干抗拉强度和平衡的冲击电阻,使其成为承受负载,耐受耐受耐受性的零件的流行选择。
整个聚酰胺家族提供了良好的耐磨性。 Kevlar®等芳族聚酰胺结合了非常高的表面硬度和模量,并具有出色的磨损和切割性。常见的尼龙(PA6和PA6,6)具有中等硬度,但摩擦系数低(≈0.2-0.3),在干燥和润滑条件下使它们具有出色的耐磨性。长链脂肪族聚酰胺(PA11和PA12)具有柔软,更柔软的链段,与PA6/PA6,6相比,硬度略低,耐磨性略低。但是,它们的高韧性使他们能够在低负载,高影响力应用中保持出色的磨损性能。
聚酰胺的冲击力在很大程度上取决于链柔韧性,玻璃过渡温度(TG)和吸收水分。即使在低温下,诸如PA11和PA12之类的长链等级也具有出色的韧性。常见的尼龙(PA6和PA6,6)提供了平衡的冲击强度,随着水的充当增塑剂,可以通过中等水分吸收来进一步改善,从而降低了TG。芳族聚酰胺(例如Kevlar®)虽然张力极高,但在横向或高应变率的影响下却更加僵硬,宽容且宽容时,当以散装或复合形式使用而不是用作纤维时。
在不同的聚酰胺之间,耐化学性差异很大。常见的尼龙(PA6和PA6/6)可为轻烃,油和大多数非极性溶剂提供良好的障碍,但是当暴露于浓酸,强碱或氧化剂(如硝酸酸,漂白剂和氯的溶剂)时,它们容易容易水解或降解。长链脂族聚酰胺(PA11和PA12)可以抵抗石油,燃料,许多有机溶剂和油,使其成为燃油管线,燃油箱组件,齿轮和滑动零件的首选。
芳族聚酰胺(例如Kevlar,Nomex)对几乎所有常见的溶剂和燃料都具有高度抗性。然而,温度升高,延长的浸入或动态磨损会使多酰胺内的微型体和氢键网络更容易受到化学入口的影响,从而导致性能降解。
在23°C和50%RH下,典型的尼龙(PA6和PA6/6)的水分吸收率约为2-3%,而长链聚酰胺(PA11和PA12)仅吸收约0.5-1%,而芳族聚酰胺吸收甚至更少。水分吸收略微使材料塑造,从而增加韧性并降低脆性骨折的风险。在光学或隐藏应用中,水合还使尼龙的折射率更接近水,增强了“隐形”,这是尼龙钓鱼线的原理。
但是,吸收水分也会导致尺寸肿胀,刚度和强度降低,在某些情况下是水解,最终缩短了材料的使用寿命。

聚酰胺和尼龙是出色的3D打印材料,因为它们具有出色的机械强度,热稳定性和耐化学性。这些聚合物还与广泛的添加剂制造工艺兼容,可回收和支持多功能后处理。这里是一些最常见的3D打印尼龙和多酰胺材料及其用途。
PA12是3D打印中最常见的聚酰胺之一,可提供低水分吸收(〜0.5–1.0%),高维精度以及对脂肪族碳氢化合物(燃料,油)的极好耐药性,许多酒精和稀释碱。此外,与其他尼龙粉末相比,它具有更好的影响抗性和疲劳寿命。
PA12用〜40 wt%的玻璃珠加强,以提高刚度,尺寸稳定性和细质量的表面饰面。
与PA12 GB相似,但用切碎的玻璃纤维加固(〜35–40 wt%),PA12 GF的刚度和拉伸强度明显更高,但通常提供更大的翘曲趋势和更脆弱的断裂行为。
FDM级尼龙被认为是最强,最具影响力的常见FDM材料之一。它具有出色的磨损和耐热性,但吸收较高(〜2-3%),而收缩率与PA12相比更容易扭曲。
PA11是一种基于生物的尼龙,具有出色的柔韧性,抗冲击力和环境稳定性。
改良的PA11带有添加的引起刺激性填充剂,例如三氧化钼或氧化铝三水合物,可用于高热或电子环境。
聚酰胺是所有具有酰胺键的聚合物的伞项,其中尼龙是最知名和使用的合成变体。由于它们具有出色的强度,柔韧性,耐化学性和设计多功能性,这些材料已成为3D打印世界中出色的选择。无论您是与PA12合作用于精密外壳,用于抗影响的生物零件的PA11,还是用于结构应用的玻璃增强式变体,这些材料都将继续解锁整个行业的新可能性,包括从航空航天和自动发展到医疗和消费电子电子。
Chiggo致力于将您的想法变成高性能,即实用的解决方案,凭借添加剂制造,材料选择和生产级质量控制方面的深厚专业知识。联系我们并迈出您的项目的下一步!
“ PA”在PA6或PA12中代表什么?
“ PA”代表聚酰胺。该数字表示所用单体中的碳原子数量 - 例如,PA6来自caprolactam(6碳),PA12,来自Lauryl lactam(12碳)。
多酰胺健康吗?
是的,聚酰胺通常被认为是安全且健康的,对于大多数人来说,在服装和纺织品中使用。由于其轻巧,可拉伸和耐用性,它被广泛用于运动服,内衣,袜子,泳装和外套。
加工零件在整个行业都普遍存在。它们代表了一类精确的工程组件,这些组件是通过减法过程对严格公差进行的,并提供复杂的几何形状,可重复的精度和出色的表面饰面。
通过机械加工的制造过程,可以将材料成型为所需的产品。然而,加工材料并不总是一件容易的事,因为材料的特性和具体的加工条件在决定整个过程的平稳性和效率方面起着至关重要的作用。所有这些考虑都与一个关键词“机械加工性”有关。
想象一下,将您最喜欢的咖啡杯放在厨房的地板上 - 它变成锋利的碎片。现在,秋天后,想象一下智能手机屏幕蜘蛛网,或地震期间未增强的混凝土墙破裂。这些日常示例突出了脆性,这是一种物质属性,可以导致突然破裂而不会警告。 Brittlenes对安全性和可靠性至关重要:建筑物,桥梁或产品中的脆性组件如果不考虑灾难性的情况。历史提供了鲜明的提醒 - 最著名的是RMS泰坦尼克号,其钢铁在冰冷的大西洋水域变得脆弱,并在撞击而不是弯曲方面破裂,导致了灾难。工程师和设计师密切关注Brittleness,因为与弯曲或伸展的延性材料不同,脆性易碎的材料往往会在压力下折断。 这篇文章探讨了什么是脆性以及它与硬度和韧性的不同。它还解释了为什么玻璃或铸铁等材料是脆性的,以及我们如何测试和减轻工程设计中的脆性。 什么是脆性? 材料科学中的脆弱性是指材料事先几乎没有塑性变形的材料倾向的趋势。简而言之,脆性材料不会弯曲或伸展太多 - 它会破裂。如果您尝试弯曲脆性物体,它几乎会立即破裂或捕捉,而不是经历塑性变形。这是相反的延性,在失败之前,材料维持明显的塑性变形(例如,将其吸引到电线或弯曲中)的能力。高度延展的金属(例如铜或金)可以大量弯曲,拉伸或抽出,而在仅弹性菌株后,脆性材料(例如玻璃或陶瓷)骨折。 脆性,韧性,韧性和硬度 比较脆性和延展性归结于材料在骨折前可以变形的材料多少。脆性材料的延展性很低,并在小应变下达到其断裂点。延性的一个可以维持明显的塑性变形。在金属中,一个共同的经验法则是,休息时的伸长率通常称为脆,而考虑〜5%延性(材料和测试依赖性;陶瓷和玻璃通常远低于1%)。实际上,脆性材料几乎没有发出警告 - 在折断之前,它们不会明显弯曲或脖子。在应力 - 应变曲线,延性材料显示出屈服和较长的塑料区域,而脆性材料几乎是线性弹性的,直到突然裂缝具有最小的可塑性。 韧性描述材料在破裂前吸收的能量(思考:应力 - 应变曲线下的区域)。当材料结合高强度和良好的延展性时,通常会增加。这不是严厉的“相反”。橡胶轮胎很艰难,因为它会变形并吸收影响。退火玻璃很脆,因为它不能塑料变形,因此急剧的打击会使它破裂。 硬度是一个不同的概念 - 它抵抗刮擦和局部凹痕。材料可能非常困难但脆弱。例如,钻石抵制刮擦,但缺乏可塑性,可以在急剧的打击下切碎或劈开。相反,相对柔软的东西(例如橡胶)可以抵抗撞击的破裂,因为它会变形。简而言之,硬度涉及对局部变形的抵抗力,而残酷的性质描述了断裂行为。 易碎材料的示例及其失败 许多日常和工业材料表现出脆弱的行为。以下是一些例子,以及它们如何在压力下失败: 玻璃:普通玻璃(例如窗玻璃或水杯)是一种经典的脆性材料。它在压缩方面非常坚固且强烈,但是在拉伸应力或影响下,它不能塑性变形。将玻璃杯放在坚硬的地板上,通常会碎裂大而尖锐的碎片。故障是通过裂纹传播的:一旦一个微小的缺陷或冲击点会引发裂缝,它就会穿过玻璃,几乎没有塑性变形。这种脆性来自其结构:二氧化硅网络是刚性和无定形的,与金属不同,没有移动位错来缓解压力。有趣的是,特殊治疗可以改变玻璃断裂的方式,例如,通过热处理以引入表面压力应力而产生的钢化玻璃,仍然很脆,但往往会分解成小钝骰子样的碎片(因此“安全玻璃”)。层压玻璃,用于挡风玻璃,将两个玻璃杯粘合到塑料层中(通常是PVB),因此,当裂缝形成裂缝时,层中层将碎片将碎片固定在一起。这些治疗方法可以减轻故障模式,但从根本上讲,玻璃通过破裂而不是弯曲而失败。 陶瓷:陶瓷同样脆弱。从架子上敲出陶瓷花瓶,它会碎片或破碎而不是凹痕。从结构上讲,陶瓷是离子和/或共价键合的,通常是多晶(瓷器也包含玻璃相)。例如,在瓷板中,原子晶格是刚性的。当压力时,原子飞机无法轻易滑落。在离子固体中,一个小移位带来了同样的带电离子并排,它们强烈排斥,裂纹引发。由于位错运动是有限的,键是定向的,因此陶瓷具有高硬度和抗压强度,但倾向于在张力或弯曲下折断。当它们失败时,裂缝表面通常会清洁并沿晶体平面(裂解)。陶瓷瓷砖超出其容量超出其容量的裂纹,可以通过身体传播,并用干净的玻璃状断裂破裂,几乎没有可见的屈服。 铸铁(尤其是灰色铸铁):铸铁是一种金属,但某些成绩却是脆弱的。如果您曾经看过旧的铸铁发动机块或铸铁管道裂缝,则目睹了易碎的断裂。灰色铸铁(以其断裂表面的灰色命名)具有相对较高的碳含量。碳形成石墨片,分布在整个铁基质中。这些薄片的行为就像内部裂缝和强烈的压力集中器,因此金属在破裂之前不会伸展太多。结果,铸铁在压缩方面非常强(均匀支撑时),但在张力或影响不足可能会突然失败。相比之下,延性(结节性)铁是一种改良的铸铁,在该铸铁中诱导石墨形成球形结节(通常是通过镁处理)。它的脆性要小得多,并且会在影响下变形,而不是破碎。我们将在“设计”部分中进一步讨论。 具体的:混凝土看起来像是坚固且岩石状的(而且是),但这是脆弱材料的另一个例子。在压缩下,混凝土非常强大,可以承受很大的负载。但是,在张力(拉或弯曲)下,纯混凝土裂缝很容易。水泥糊和硬矿物聚集体的混合物形成了具有非常有限的塑料流能力的刚性基质,因此很小的拉伸菌株开放的微裂纹可以迅速合并。这就是为什么钢筋混凝土如此普遍的原因:钢钢筋嵌入以携带张力并增加延展性(和韧性)。钢可以屈服和伸展,将截面保持在一起并提供警告(裂缝形成并逐渐扩大),而不是突然的脆性崩溃。 其他脆性材料:还有许多其他例子。如果不调和,高碳或高度硬化的工具钢可能会变脆。文件或非常坚硬的刀片可能会在弯曲时捕捉,因为更高的碳和硬度可减少延展性。石墨,就像铅笔“铅”一样脆弱:其分层结构使飞机滑动留下标记,但在适度的力下,棍子很容易折断。有些聚合物也很脆。聚苯乙烯(用于一次性餐具和旧CD案例中的刚性塑料)倾向于捕捉而不是弯曲。 为什么有些材料脆弱? 要了解脆性,它有助于查看微观和原子尺度上的材料内发生的情况。材料的原子键和微观结构有所不同,这些差异决定了它们对压力的反应。 在结晶金属中,定位的金属键合和移动位错通常会造型流动。当滑动很容易时,应力再分配和裂纹尖端会钝化。如果粘结是高度定向的,或者晶体几乎没有可操作的滑动系统,则可塑性受到限制;应力集中到裂纹成核并繁殖。 然后,微观结构决定裂纹的生长是如何生长的。尖锐的夹杂物,硬第二阶段,毛孔或弱接口充当裂纹的发射地点和途径。温度和应变速率也很重要:较低的温度或更高的应变速率降低了可塑性,将行为推向脆性断裂。环境可以使平衡 - 原子氢加速裂纹,而晶粒结合的降解(例如晶间腐蚀或杂质隔离)可降低沿边界的凝聚力。 简而言之,当塑料适应不足并占主导地位时,勃彩会出现。如果材料无法自由移动脱位或在裂纹尖端下消散能量,则失败是突然的,几乎没有警告。 如何测量或测试脆性? 由于Brittlense是关于材料在压力下的行为(几乎没有变形),因此没有一个“勃贴”数字,您可以像密度或熔点一样抬头。取而代之的是,工程师使用延展性,断裂韧性和影响能量的测试间接表征它。 衡量脆性行为的标准方法之一是拉伸测试。在记录压力和应变时,拉动狗骨标本,以产生应力 - 应变曲线。脆性反应是几乎线性的突然断裂的弹性途径,几乎没有或没有产量区域。两个快速指示器(突破时的延长和降低面积)是延展性的度量(并成反比)。脆性的材料将显示出低伸长率和最小的面积减少(颈部很少或没有颈部)。对于金属,测试设置和报告遵循ASTM E8。 在Charpy V-Notch撞击测试中,摇摆的摆板击中了一个缺口的杆,并且在焦耳的能量中记录了摆能量的损失(来自秋千高度的变化)(j)。低吸收能表示脆弱的反应。高能量表示韧性。由于结果取决于标本的大小和缺口几何形状,因此最好将夏普能量用于比较和温度研究,而不是基本材料常数。在多个温度下进行测试映射延性到脆性的过渡。工程师还阅读了断裂表面:明亮,刻面/裂解特征表明脆性断裂,而暗淡,纤维状的外观表示延性断裂。 另一个关键措施是平面应变骨折韧性(K我知道了),一种骨折的机电参数,可量化材料对裂纹生长的抗性。它是根据预先裂纹标本的精确测试确定的,代表裂纹开始延伸的临界应力强度因子。脆性材料有低k我知道了因此,缺陷差 - 小裂纹会在相对较低的压力下导致失败,而坚韧的延性材料具有较高的k我知道了并且可以直言不讳或逮捕裂缝。工程师使用裂缝 - 阻力数据来设置允许的缺陷大小,并针对服务突然断裂进行设计。 如何防止设计中的脆弱失败 由于脆弱性会导致突然的灾难性失败,因此工程师已经制定了处理策略 - 通过选择不同的材料或修改材料和设计以使脆弱行为降低危险性。 材料选择和处理 […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español