态从多种材料喜欢陶瓷,木材和复合材料。如果您需要一个塑料零件并决定将CNC机加工,第一步是选择正确的塑料类型。但是,有这么多可加工的选项,您如何选择正确的选择?继续阅读 - 本文将指导您找到答案。
并非所有塑料都适合加工。塑料的可加工性取决于关键的机械性能,例如冲击强度,耐磨性和尺寸稳定性。这些特性也可能会根据材料的处理而变化,例如,在加工之前,许多高温热塑性塑料(如PEEK和PPS)进行了退火,以减少内部压力并提高稳定性。
大多数热塑性材料可以通过CNC加工产生良好的结果。接下来,我们将重点关注CNC加工中最常用的塑料。有关更广泛的塑料选择,请查看Chiggo的塑料CNC加工服务以获取更多详细信息。

ABS是一种多功能的通用塑料,以低廉的价格具有良好的韧性,抗冲击力和可加工性的平衡。通过注入成型,CNC加工或3D打印很容易处理,并且形成温度范围相对较宽。它也很容易用绘画,涂料或镀层完成。
但是,ABS没有良好的耐磨性,并且对浓酸,碱和溶剂具有有限的耐化学性。长时间暴露于紫外线或恶劣的室外状况会导致衰老,变色或破裂。它的强度和尺寸稳定性也可能在高温环境中降解。
常见应用:预注射成型原型,家用电器,电子外壳,汽车仪表板和乐高积木。

Delrin是杜邦族裔乙酸盐的商品名称。它具有较高的拉伸强度和刚度,在长期或重复载荷下保持形状和强度。具有出色的尺寸稳定性和可加工性,Acetal/POM是CNC生产的塑料零件的首选,需要精确和紧密的公差。另外,POM对各种化学物质具有高度抗性,包括油,燃料,弱酸和碱。其光滑的表面和低摩擦系数使其特别适合需要滑动或滚动应用的零件。
POM可以在-40℃和120℃之间运行,但在较高温度下可能会降解或分解。它的紫外线耐药性很差,并且作为一种易燃材料,使用过程中需要进行消防安全预防措施。
常见应用:通常用于机械传输部件,例如齿轮,轴承,皮带轮和凸轮。它也广泛用于汽车,消费电子设备和医疗设备中。

丙烯酸或PMMA是具有出色光学特性的透明热塑性塑料。其轻型传输速率高达92%,它比玻璃更透明,重量更轻。这些使其成为玻璃或轻型管道的轻便替代品。它还具有良好的天气阻力和紫外线稳定性,在室外环境中表现良好。
与PC等工程塑料相比,PMMA的影响力较低,并且更容易破裂或破碎。表面相对较软,很容易刮擦。一块丙烯酸上的任何机械表面都会失去其透明度,并具有磨砂的半透明外观。如果在加工表面上需要透明度,则可以将其作为附加后处理步骤进行抛光。
常见应用:灯光盖,展示架,光镜,装饰面板,屏幕保护器和医疗盾牌。

尼龙有各种形式可用,尼龙6/6,玻璃充满的尼龙是Chiggo最常用的。两者都是CNC加工的出色材料,并保留标准尼龙的关键优势(例如尼龙6),包括高强度,韧性,低摩擦力,出色的耐磨性和良好的耐化学性能。
与尼龙6相比,尼龙6/6 具有更有序的分子结构和更高的结晶度。这会导致更高的强度,刚度和更高的热偏转温度。虽然其吸收水分略低于尼龙6,但仍可能影响潮湿环境中的尺寸稳定性。
充满玻璃的尼龙结合了玻璃纤维,可显着提高强度和刚性以处理高负载应用。它还减少了热膨胀,更好的尺寸稳定性和较高的高温环境耐热性。但是,机器更具挑战性,在CNC处理过程中可能会导致更大的工具磨损。两种类型都可以抵抗油,燃料和许多化学溶剂,但在强酸环境中的性能很差。
常见应用:齿轮,衬套,紧固件,电路板安装硬件,绝缘材料,汽车发动机舱组件和工业输送带导管。

与PMMA相似,PC也是一种透明的热塑性塑料,但耐撞击是10〜20倍,并且是最艰难的工程塑料之一。 PC可以通过CNC加工,注射成型和挤出来处理PC,并且适合钻孔,切割和抛光。它还保持尺寸稳定性,并在较宽的温度范围内(-40°C至120°C)表现良好。它的天然乳蓝色色调和光泽饰面可以黑色用于不透明的应用,提供功能和美观。
纯聚碳酸酯的耐磨性不佳,容易刮擦。可以添加抗刮擦涂料和蒸气抛光,作为提高耐磨性或光学清晰度的后处理步骤。它也具有有限的天气抗性,并且在长时间的紫外线暴露期间倾向于黄色。此外,其成本高于ABS等一般塑料的成本,这可能会限制其在大规模应用中的使用。
常见应用:安全设备,例如头盔和护目镜,镜片和LED盖等光学组件,电子外壳,灯罩诸如灯罩等汽车零件以及透明屋顶和声音屏障等建筑材料。

PEEK是一种高性能的热塑性,能够承受极高的温度,即在250°C左右,甚至短期300°C,远远超过了最常见的塑料的热极限。它具有出色的机械强度,刚度,韧性,耐磨损性和化学腐蚀性。它的低水分吸收可确保尺寸稳定性,并且还提供了良好的生物相容性。
与其他高性能塑料相比,PEEK的密度更高。尽管具有强烈的耐化学性,但长期暴露于紫外线和氧气可能会导致降解。由于高原材料成本和加工过程的复杂性,PEEK也比大多数CNC塑料都要贵。
常见应用:发动机组件和密封件的航空航天,高性能零件的汽车,植入物和仪器的医疗,阀门和泵的化学物质以及电缆绝缘和连接器的电子设备。

PVC是一种经济的,易于加工和实用的塑料。它对酸,碱,盐和有机溶剂具有很强的耐药性,并且是极好的电绝缘体。由于其高氯含量,PVC具有令人印象深刻的引起焦点特性,使其成为各个行业中广泛使用的材料。
但是,PVC的热量稳定性较差,并且在长时间暴露于高温时会降解或变脆。在处理过程中,PVC可能会释放有害的氯气,因此必须采取适当的安全措施。
常见应用:排水管,电缆绝缘,输液管,药品包装,消费品包装,广告牌和标志,以及地板材料,窗框和建筑材料中的门框。

HDPE代表高密度聚乙烯。尽管它的名称,HDPE的密度不如许多工程塑料(例如POM,PC或PA)。它具有出色的耐化学性,电绝缘材料,并在低温下保持良好的冲击力和韧性。 HDPE的水分吸收率极低,被认为是食品安全。
HDPE的主要缺点包括相对较低的耐热性和较差的紫外线稳定性。此外,它的机械性能略低于某些工程塑料(例如尼龙或POM),这可能会限制其在高精度加工或在重载条件下的性能。
c 欧蒙(Ommon)应用:水管,食物包装,储藏容器,农业灌溉系统和化学储罐。

PTFE以其品牌Teflon广泛认可,是一种白色固体,具有极低的摩擦系数,通常被认为是任何固体材料中最低的。这意味着PTFE零件通常不需要润滑剂。它的超低表面能使其对污染具有很高的耐药性,并且可以轻松清洁。另外,PTFE对几乎所有化学物质具有高度耐药性,并且具有出色的耐热性,能够连续接触高达260°C(500°F)的温度。作为高性能材料,它也是一种出色的电绝缘体。
但是,与其他工程塑料(如PEEK或POM)相比,PTFE具有较低的机械强度,并且很容易刮擦或损坏。它还具有高的热膨胀系数,在高温加工期间,它可以释放有害气体。因此,PTFE的精确加工可能具有挑战性。
常见应用:密封,管道衬里和化学工业中的阀门;食品加工和药品的设备;电缆;以及汽车和航空航天行业中的密封和绝缘材料,以及轨道和轴承等滑动组件。
从上一部分开始,我们对常见的CNC塑料有了总体的了解,并且可能注意到它们的物理,机械或化学特性不同,这可能会影响您项目的结果。接下来,我们将解释您在塑料CNC加工中应考虑的各种因素。
特定塑料的硬度和强度特性是确保其最终应用要求的重要考虑因素。高硬度塑料通常具有更好的耐磨性,而高强度塑料可以承受更大的机械载荷。此外,这些特性会影响材料在加工过程中的行为方式。具有较高硬度和强度的塑料,例如POM,PEEK和玻璃纤维增强的PA,倾向于产生短而常规的芯片,并获得高表面饰面。但是,切割更具挑战性,工具磨损的发生更快。
相比之下,PP,PVC和PTFE等较软或较低的塑料在加工过程中会产生长而刺耳的芯片,可以轻松缠绕该工具。这些材料容易粘附和挖掘,导致表面质量问题。
与大多数金属在正常条件下不吸收空气中的水分不同,许多塑料(例如PA和PC)会吸收大气或冷却液中的水分。这可能会导致维度扩展,从而影响CNC加工精度。水分还可以软化塑料,降低其韧性或释放内部应力,所有这些都会影响零件的耐用性。为了防止脆性或加工缺陷,可能需要将这些塑料存储在空调房间,密封的袋子或干燥之前。
另一方面,塑料通常抵抗大多数酸,碱和盐。例如,即使在恶劣的环境中,PTFE实际上也对所有化学物质都惰性。但是,某些塑料(例如ABS)容易受到溶剂的影响,例如丙酮,它们可以溶解表面,而PC可能会在酒精或碱性溶液下破裂。
对于需要特定美学或光学特性的项目,材料的光传递是关键的考虑因素。光学组件和显示等应用涵盖具有出色透明度或特定光学特性(例如PMMA和PC)的需求材料,这些材料具有较高的透明度。
但是,加工可以显着影响塑料的光学性能。即使是较小的表面缺陷,划痕或工具标记也可以减少光线传感器并导致不必要的散射,从而影响光学清晰度。为了保持较高的透明度和表面质量,通常需要进行细微的切割,抛光或化学处理。
塑料在暴露于热量时膨胀,这是通过热膨胀系数(CTE)测量的特性。与金属相比,塑料通常具有更高的CTE(50–250×10⁻⁶/°C,而对于钢和铝等材料,塑料通常具有10–25×10⁻⁶/°C。 CTE越高,CNC加工过程中热量引起的尺寸变化越大,这可能会影响精度。对于高精度应用,例如航空航天和医疗设备,具有高CTE的塑料(如POM和PTFE)可能需要设计补偿以保持准确性。另外,低膨胀材料(例如PEEK或玻璃纤维增强的复合材料)可以帮助最大程度地减少热失真。
热偏转温度(HDT)测量材料在升高温度下负载下抗变形的能力。通常,塑料的HDT与其刚度相对应 - 具有较高刚性的材料(例如玻璃纤维增强的塑料和聚酰亚胺)倾向于具有较高的HDT值,而更柔性的聚合物(例如PE和PP)具有较低的HDT值。 HDT较高的塑料在较高温度下可以保持尺寸稳定,从而确保零件按预期执行。但是,大多数塑料的HDT明显低于金属。它们的范围通常落在50°C和250°C之间,只有少数高性能的工程塑料(例如PEEK和PAI)可以达到300°C左右。

CNC塑料比金属具有独特的优势,包括较低的密度,优质的耐化学性,出色的电绝缘材料和成本效率。此外,它们与各种制造过程兼容,例如CNC加工,3D打印和注塑成型。
我们希望本指南能够提供宝贵的见解,以帮助您在为项目选择CNC塑料时做出明智的决定。如果您不确定CNC加工还是3D打印是正确的选择,或者您正在寻求专家指导和高质量的CNC加工解决方案,则今天的chiggo - LET即将开始!
钢材是现代工业中最基本、最重要的材料之一,用于各种应用,并在我们每天周围的许多建筑物和结构中随处可见。根据世界钢铁协会的数据,预计2024年全球钢铁产量将接近19亿吨。< /a> 数千年前,人类开始探索如何从铁矿石中提取更坚固、更耐用的金属。随着冶金技术的进步,钢逐渐成为比纯铁更坚固、更坚韧、用途更广泛的材料。与此同时,这些进步导致了多种钢种的发展。 其中,最常见的两种类型是碳钢和合金钢。虽然它们乍一看可能很相似,但关键的区别使它们与众不同,使得一个比另一个更适合某些应用。我们将在下面的文章中详细解释每种类型的钢材,并提供清晰的比较,以帮助您选择正确的钢材。 什么是合金钢? 合金钢主要由铁和碳组成,并以不同比例添加铬、镍、钼、锰或钒等合金元素。这些附加元素为合金钢带来了优势,增强了强度、硬度、耐腐蚀性、耐磨性和韧性等性能。 根据合金元素总重量百分比是低于还是高于5%,合金钢一般分为两类:低合金钢和高合金钢。 低合金类型是最常用的。它们通常包含的合金元素(例如锰和硅)主要增强结构强度和可焊性,同时保持良好的延展性和可加工性。由于生产成本相对较低,它们在一般工程应用中很受欢迎。 除了碳、锰和硅之外,高合金钢还含有较高比例的铬、镍、钼、钨和钒等元素,以及钛和铌等稀有元素。这些元素提高了耐腐蚀性、高温强度和耐磨性等性能,使该材料对于苛刻的工程场景至关重要。 现在,我们来看看合金钢中最常用的五种元素。 铬:A key component in stainless steel and some tool steels. The right amount of chromium can significantly improve corrosion resistance and positively affect hardness and wear resistance. 镍: Improves toughness, especially in low-temperature environments. Pure nickel or high-nickel alloys, such as Monel and Inconel, offer […]
我们每天都会遇到尼龙,它首先用作织物的丝绸替代品,在第二次世界大战期间,它出现在降落伞,生命式绳索,甚至是防弹背心衬里。如今,尼龙是最受欢迎的工程塑料之一,这要归功于其高强度比率,自润滑耐磨性,化学和热稳定性以及加工多功能性。
延展性是材料科学中的一个基本概念,它解释了为什么某些材料(例如金属)会在压力下显着弯曲或伸展,而另一些材料突然突然会弯曲。在本文中,我们将解释什么是延展性,如何测量,为什么重要以及哪些因素影响它。 延展性的定义 延展性是材料在断裂前张力造成塑性变形的能力。简而言之,可以将延性材料拉长很长的路,而无需捕捉 - 考虑将铜拉入电线中。相比之下,像玻璃这样的脆性材料几乎没有变形后倾向于破裂或破碎。在材料科学中,塑性变形是形状的永久变化。这与弹性变形不同,弹性变形是可以恢复的。延展性与可塑性密切相关,但更具体:可塑性是在任何模式(张力,压缩或剪切)下永久变形的一般能力,而延展性则是指张力的能力。 从原子的角度来看,许多金属的高延展性来自非方向金属粘结以及允许脱位移动的滑移系统的可用性。施加压力后,脱位滑行使金属晶体可容纳塑性应变,因此金属通常弯曲或拉伸而不是断裂。相比之下,陶瓷和玻璃具有定向离子或共价键,并且滑动非常有限,因此在张力下,它们在明显的塑料流动之前倾向于破裂。但是,并非所有金属在室温下都是延性的(例如,某些BCC金属,高碳钢和金属玻璃杯可能相对脆),并且加热玻璃弯曲的玻璃弯曲主要是由于其玻璃转换温度以上的粘性流量,而不是金属式耐耐耐高压。 测量延展性 拉伸测试是量化延展性的最常见方法:标本以单轴张力加载到骨折中,延展性据报道是休息时伸长率的百分比和降低面积的百分比。 休息时伸长百分比(a%) 骨折时量规长度的百分比增加:a%=(lf -l0)/l0×100%,其中l0是原始量规长度,而LF是断裂时的最终长度。较高的A%表示拉伸延展性更大。 减少面积百分比(RA%) 裂缝位置的横截面的百分比降低:RA%=(A0 - AF)/A0×100%,其中A0是原始面积,AF是休息时的最小面积。大的RA%反映出明显的颈部和强烈的颈后延展性。 (对量规长度不太敏感;对于非常薄的纸张而言并不理想。) 这两种措施通常是拉伸测试的一部分。例如,可以描述钢样品的伸长率20%,而在休息时降低了60%的面积 - 表明延性行为。相比之下,脆性陶瓷可能仅显示1%的伸长率,而本质上可能显示出0%的面积减少(几乎没有变薄)。伸长率和降低越大,材料的延展性就越大。 可视化延展性的另一种方法是在应力 - 应变曲线上,这是从拉伸测试获得的图。绘制应力(相对变形)的应力(每单位面积)。此曲线上的要点包括: 杨的模量(E):线性弹性区域的斜率;刚度的度量。 屈服强度(σᵧ):塑性变形的发作(通常由0.2%偏移方法定义时,当不存在尖锐的屈服点)。 最终的拉伸力量(UTS):最大工程压力。超越标本的脖子;断裂发生后期,通常处于较低的工程压力下。 断裂点:标本最终破裂的地方。 延性材料(蓝色)与脆性材料(红色)的代表性应力应变曲线 延性材料的曲线在屈服后显示长塑料区域,表明它可以在骨折前保持较大的应变。相比之下,脆性材料的曲线在屈服点附近结束,几乎没有塑料区域。总而言之,在工程应力 - 应变图(对于规定的规格长度)上,延展性反映了裂缝的总应变 - 延性材料的长时间,脆性材料的较短。但是,明显的断裂应变取决于所选的量规长,一旦颈部开始定位,颈部开始定位,因此工程曲线不是颈后延展的直接衡量。因此,规格通常在休息时报告百分比伸长率(a%)以及降低面积百分比(RA%)。 延展性和延展性有什么区别? 延展性是一种材料在不破裂而伸展张力的能力。我们以拉伸测试的伸长百分比或减少面积来量化它。如果可以将金属吸入电线,则是延展性的。锻造性是一种材料在压缩方面变形的能力(不开裂,可以锤击,滚动或压入纸板);我们通过弯曲/扁平/拔罐测试或减小厚度可以耐受多少判断。 实际上:黄金,铜和铝都是高度延展且可延展的(非常适合电线和纸板)。铅非常具有延展性,但仅适中延展性(易于滚动成薄片,较差,作为细丝)。镁在室温下的延展性有限,而锌在变暖时会更具延展性。为了制造制造,选择延性合金用于绘画,深度拉伸和下拉的功能;选择可延展的合金滚动,冲压和锻造,在压缩占主导地位的地方。温度和晶体结构移动两个特性。快速规则:延展性=张力/电线;锻造性=压缩/表。 为什么延展性很重要 延展性是制造性和服务安全性安全背后的安静主力。在工厂中,它允许将金属卷成纸板,将其拉入电线并锻造而不会破裂。在现场,它使组件能够吸收能量,重新分配应力并在失败前提供警告。 制造的延性材料 高延展性通常意味着一种材料是可行的:它可以锻造,滚动,绘制或挤出成各种形状而不会破裂。低延展性(脆性)意味着该材料很难变形,并且更适合于铸造或加工等过程(在材料不强迫塑料形状过多地改变形状)之类的过程中。 锻造和滚动:这些过程通过锤击(锻造)或在掷骰(滚动)之间将固体金属变形为形状。延性金属耐受涉及的大塑料菌株。实际上,钢板/开花被热卷成薄板,板和结构形状,例如I光束,铝很容易被伪造成组件 - 金属在压缩载荷下流动。相比之下,像铸铁这样的脆性合金倾向于在沉重的变形下破裂,因此通常通过铸造到近网状形式来形状。 挤出和电线/栏绘图:挤出将金属推动通过模具制作长而恒定的截面产品。电线/条形图将固体库存通过模具降低直径。两者都依靠塑料流。可以将延性合金(例如铝,铜和低碳钢)挤出到试管和轮廓(例如窗框,热水链截面)中,并将其抽入细线。在加工温度下没有足够的延展性的材料倾向于检查或裂缝,这就是为什么玻璃或陶瓷不会以固态挤出/绘制的原因;他们的纤维是融化的。 深图:深色绘图形成轴对称的杯子和罐,并用拳头迫使薄板进入模具;法兰向内进食,而墙壁略微稀薄。足够的延性可防止分裂和皱纹。铝饮料罐头是经典的例子。 薄板金属弯曲和冲压:车身面板和外壳的一般弯曲和冲压需要延展性,以避免边缘裂纹和橙色 - 薄荷伸展时。钢制和铝等级是针对形成性量身定制的,因此可以将复杂的形状(例如,汽车引擎盖)盖章而不会故障。 金属3D打印(AM):延展性仍然很重要。当然的零件(尤其是来自激光粉床融合(LPBF))可以显示出由于细,质感的微观结构,残留应力和孔隙率而显示出降低的延展性。压力缓解和热等静止压力(髋关节),然后经常进行轻热处理,恢复延展性并降低开裂风险;然后,TI-6AL-4V和ALSI10MG等合金可以提供有用的服务延展性。 现实世界应用的延性材料 延展性不仅是实验室指标,还直接影响现实世界结构,车辆和设备的性能。这就是为什么它在工程和设计中重要的原因: 防止突然失败并提高安全性:延性材料逐渐失效:它们在断裂前产生和吸收能量,提供可见的警告并允许负载重新分配。在建筑物中,这就是为什么结构钢受到青睐的原因 - 超负荷的梁会弯曲而不是捕捉。钢筋混凝土遵循相同的逻辑:嵌入式钢钢筋增加延展性,因此成员可以在地震需求下弯曲而不是分开。 影响(地震和碰撞应用)中的能量吸收:在动态载荷下,延展性将影响能量变成塑料工作。钢框通过屈服来消散地震力,并以钢或铝折叠的汽车碎区域的控制方式以受控的方式降低机舱减速。现代人体结构平衡强度与延展性(例如DP/Trip Steels),并且航空航天Al/Ti合金保留足够的延展性,以造鸟,加压和冷soak耐受性。 […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español