在工业应用中,金属的选择不仅受强度,硬度和密度等机械性能的影响,而且还受热特性的影响。要考虑的最关键的热特性之一是金属的熔点。
例如,如果金属融化,炉件,喷气发动机燃料喷嘴和排气系统可能会灾难性地失败。结果可能会堵塞孔或发动机故障。熔点在制造过程中也至关重要,例如冶炼,焊接和铸件,金属需要以液态形式进行。这需要设计旨在承受熔融金属的极热的工具。即使金属在熔点以下的温度下可能会遭受蠕变引起的裂缝,但设计人员在选择合金时通常会使用熔点作为基准。
熔点是在大气压下固体开始过渡为液体的最低温度。在这种温度下,固体和液相都在平衡中共存。一旦达到熔点,直到金属完全融化,额外的热量就不会增加温度。这是因为在相变期间提供的热量用于克服融合的潜热。
不同的金属具有不同的熔点,这些熔点取决于它们的原子结构和粘结强度。紧密包装原子布置的金属通常具有较高的熔点。例如,钨在3422°C时具有最高之一。金属键的强度会影响克服原子之间的吸引力并导致金属融化所需的能量。例如,与铁和钨等过渡金属相比,铂和黄金等金属的熔点相对较低,因为它们的粘结力较弱。
金属的熔点通常在正常条件下是稳定的。但是,某些因素可以在特定情况下对其进行修改。一种常见方法是合金 - 将其他元素添加到纯金属上,形成具有不同熔点的新材料。例如,与纯铜相比,将锡与铜混合以产生青铜的熔点。
杂质也可以产生明显的效果。即使是痕量的外国元素也会破坏原子键并转移熔化温度,这取决于物质。
物理形式也很重要。纳米颗粒,薄膜或粉末形式的金属通常在温度较低的情况下融化,因为其高表面积和原子行为改变了它们的散装。
最后,极端压力可以改变原子相互作用的方式,通常通过压缩原子结构来提高熔点。尽管这在日常应用中很少关注,但它成为材料选择和安全性评估的关键考虑因素,例如航空航天,深度钻探和高压物理学研究。
| 金属/合金 | 熔点(°C) | 熔点(°F) |
| 铝 | 660 | 1220 |
| 黄铜(Cu-Zn合金) | 〜930(组成依赖性) | 〜1710 |
| 青铜(Cu-Sn合金) | 〜913 | 〜1675 |
| 碳钢 | 1425–1540 | 2600–2800 |
| 铸铁 | 〜1204 | 〜2200 |
| 铜 | 1084 | 1983 |
| 金子 | 1064 | 1947年 |
| 铁 | 1538年 | 2800 |
| 带领 | 328 | 622 |
| 镍 | 1453 | 2647 |
| 银 | 961 | 1762年 |
| 不锈钢 | 1375–1530(依赖级) | 2500–2785 |
| 锡 | 232 | 450 |
| 钛 | 1670年 | 3038 |
| 钨 | 〜3400 | 〜6150 |
| 锌 | 420 | 787 |
| 金属/合金 | 熔点(°C) | 熔点(°F) |
| 钨(W) | 3400 | 6150 |
| rhenium(re) | 3186 | 5767 |
| osmium(OS) | 3025 | 5477 |
| 坦塔尔(TA) | 2980 | 5400 |
| 钼(MO) | 2620 | 4750 |
| niobium(NB) | 2470 | 4473 |
| 虹膜(IR) | 2446 | 4435 |
| 松(ru) | 2334 | 4233 |
| 铬(CR) | 1860年 | 3380 |
| 钒(V) | 1910 | 3470 |
| rh | 1965年 | 3569 |
| 钛(TI) | 1670年 | 3040 |
| 钴(CO) | 1495 | 2723 |
| 镍(NI) | 1453 | 2647 |
| 钯(PD) | 1555年 | 2831 |
| 铂(PT) | 1770年 | 3220 |
| thor | 1750 | 3180 |
| Hastelloy(合金) | 1320–1350 | 2410–2460 |
| inconel(合金) | 1390–1425 | 2540–2600 |
| Incoloy(合金) | 1390–1425 | 2540–2600 |
| 碳钢 | 1371–1540 | 2500–2800 |
| 锻铁 | 1482–1593 | 2700–2900 |
| 不锈钢 | 〜1510 | 〜2750 |
| 莫内尔(合金) | 1300–1350 | 2370–2460 |
| 铍(BE) | 1285 | 2345 |
| 锰(MN) | 1244 | 2271 |
| 铀(U) | 1132 | 2070 |
| 杯子 | 1170–1240 | 2138–2264 |
| 延性铁 | 〜1149 | 〜2100 |
| 铸铁 | 1127–1204 | 2060–2200 |
| 黄金(AU) | 1064 | 1945年 |
| 铜(CU) | 1084 | 1983 |
| 银(AG) | 961 | 1761年 |
| 红色黄铜 | 990–1025 | 1810–1880 |
| 青铜 | 〜913 | 〜1675 |
| 黄色黄铜 | 905–932 | 1660–1710 |
| 金钟黄铜 | 900–940 | 1650–1720 |
| 硬币银 | 879 | 1614年 |
| 纯银 | 893 | 1640年 |
| 锰青铜 | 865–890 | 1590–1630 |
| 铍铜 | 865–955 | 1587–1750 |
| 铝青铜 | 600–655 | 1190–1215 |
| 铝(纯) | 660 | 1220 |
| 镁(mg) | 650 | 1200 |
| p pl | 〜640 | 〜1184 |
| 锑(SB) | 630 | 1166 |
| 镁合金 | 349–649 | 660–1200 |
| 锌(Zn) | 420 | 787 |
| 镉(CD) | 321 | 610 |
| 鞭毛(BI) | 272 | 521 |
| 巴比特(合金) | 〜249 | 〜480 |
| 锡(SN) | 232 | 450 |
| 焊料(PB-SN合金) | 〜215 | 〜419 |
| 硒(SE)* | 217 | 423 |
| ind | 157 | 315 |
| 钠(NA) | 98 | 208 |
| 钾(K) | 63 | 145 |
| gall | 〜30 | 〜86 |
| 剖记(CS) | 〜28 | 〜83 |
| 汞(HG) | -39 | -38 |
关键要点:
当谈到金属表面处理时,阳极氧化通常是第一个想到的方法,尤其是铝。然而,还有一种更通用的替代方案:电镀。与仅限于特定金属的阳极氧化不同,电镀适用于更广泛的材料。通过在零件上沉积一薄层金属,可以显着增强零件的外观、耐腐蚀性、耐用性和导电性。
设计在数控加工中发挥着关键作用,因为它为整个制造过程奠定了基础。众所周知,数控加工使用计算机控制的机器来精确地从工件上去除材料。该工艺具有高度通用性、可重复性和精确性,此外,它还与多种材料兼容,从泡沫和塑料到木材和金属。 实现这些功能在很大程度上依赖于 CNC 加工的设计。有效的设计不仅可以确保零件的质量,还可以节省与 CNC 加工零件相关的生产成本和时间。 在本指南中,我们将讨论设计限制,并为 CNC 加工中遇到的最常见特征提供可操作的设计规则和建议值。这些指南将帮助您获得零件的最佳结果。 CNC 加工的设计限制 为了正确设计数控加工零件,我们首先必须清楚地了解工艺中固有的各种设计限制。这些限制自然是由切割过程的力学产生的,主要涉及以下几个方面: 刀具几何形状 大多数数控加工刀具具有圆柱形形状和有限的切削长度。当从工件上去除材料时,这些切削刀具会将其几何形状转移到零件上。这意味着,无论切削刀具有多小,CNC 零件的内角始终具有半径。此外,刀具的长度限制了可加工的最大深度。较长的工具通常刚性较低,这可能导致振动或变形。 工具访问 为了去除材料,切削刀具必须直接接近工件。切削刀具无法达到的表面或特征无法进行 CNC 加工。例如,复杂的内部结构,尤其是当零件内存在多个角度或特征被另一个特征阻挡或存在较大的深宽比时,可能会使工具难以到达某些区域。五轴数控机床可以通过旋转和倾斜工件来缓解一些刀具访问限制,但它们不能完全消除所有限制,特别是刀具振动等问题。 工具刚度 与工件一样,切削刀具在加工过程中也会变形或振动。这可能会导致公差更宽松、表面粗糙度增加,甚至在制造过程中刀具破损。当刀具长度与其直径之比增加或切削高硬度材料时,这个问题变得更加明显。 工件刚度 由于加工过程中会产生大量的热量和强大的切削力,刚性较低的材料(例如某些塑料或软金属)和薄壁结构在加工过程中容易变形。 工件夹持 零件的几何形状决定了它在数控机床上的固定方式以及所需的设置数量。复杂或不规则形状的工件很难夹紧,并且可能需要特殊的夹具,这会增加成本和加工时间。此外,当手动重新定位工件夹具时,存在引入微小但不可忽略的位置误差的风险。 CNC 加工设计指南 现在,是时候将这些限制转化为可操作的设计规则了。 CNC 加工领域没有普遍接受的标准,主要是因为行业和所使用的机器总是在不断发展。但长期的加工实践已经积累了足够的经验和数据。以下指南总结了 CNC 加工零件最常见特征的建议值和可行值。 内部边缘 建议垂直圆角半径:⅓ 倍型腔深度(或更大) 通常建议避免尖锐的内角。大多数数控刀具都是圆柱形的,因此很难获得锐利的内角。使用推荐的内角半径可以使刀具遵循圆形路径,从而减少应力集中点和加工痕迹,从而获得更好的表面光洁度。这也确保了使用适当尺寸的刀具,防止刀具太大或太小,从而保持加工精度和效率。对于 90 度锐角,建议使用 T 形槽铣刀或线切割,而不是减小拐角半径。 建议地面半径:0.5 毫米、1 毫米或无半径 可行的地面半径:任何半径 立铣刀刀具通常具有平坦或略圆的下切削刃。如果设计的底部半径与推荐值一致,则可以使用标准立铣刀进行加工。这种设计受到机械师的青睐,因为它允许使用广泛可用且易于使用的工具,这在大多数情况下有助于平衡加工成本和质量。虽然球头立铣刀可以适应任何底部半径,但由于其形状,它们可能会增加加工时间和成本。 薄壁 建议的最小壁厚:0.8 毫米(金属)、1.5 毫米(塑料) 可行的最小壁厚:0.5 毫米(金属)、1.0 毫米(塑料) 数控机床在加工非常薄的壁时受到限制,因为减小壁厚会影响材料的刚度并降低可达到的精度,可能会导致加工过程中振动增加。由于材料的硬度和机械性能不同,应根据具体情况仔细评估上述推荐和可行的值。对于更薄的壁,替代工艺(例如金属板制造)可能更可取。 洞 推荐孔径:标准钻头 […]
剪切模量,有时称为刚性模量,是一种基本材料特性,可在受剪切力时测量材料的刚性。用日常的话来说,它描述了一种物质在与另一部分平行滑动时塑造变化的耐药性。在本文中,我们将解释什么是剪切模量,计算方式以及与其他弹性模量的比较以及现实世界工程示例的比较。 什么是剪切模量? 在图中,将块固定在底部,同时平行于顶表面施加力F。该力导致水平位移ΔX,块变形为倾斜的形状。倾斜角θ表示剪切应变(γ),它描述了形状的变形程度。 剪切应力(τ)是施加的力除以表面积A的作用:力的作用: τ= f / a 剪切应变(γ)是水平位移与块高度的比率: γ=ΔX / L(对于小角度,弧度中的θ≈γ) 剪切模量(g)有时用μ或s表示,可以测量材料对这种类型的失真的耐药性。它被定义为剪切应力与剪切应变的比率: g =τ /γ=(f / a) /(Δx / l)=(f·l) /(a·Δx) 在SI系统中,剪切模量的单位是Pascal(PA),它等于每平方米牛顿一个(N/m²)。由于Pascal是一个很小的单元,因此实心材料的剪切模量通常很大。因此,工程师和科学家通常在Gigapascals(GPA)中表达G,其中1 GPA =10⁹PA。 剪切模量值 下表显示了常见材料的典型剪切模量值: 材料剪切模量(GPA)铝26–27黄铜35–41碳钢79–82铜44–48带领5–6不锈钢74–79锡〜18钛(纯)41–45具体的8–12玻璃(苏打石)26–30木材(道格拉斯冷杉)0.6–1.2尼龙(未填充)0.7–1.1聚碳酸酯0.8–0.9聚乙烯0.1–0.3橡皮0.0003–0.001钻石480–520 这些数字显示了刚性有多少材料。金属倾向于在数十千兆内的剪切模量。陶瓷和玻璃的范围相似,而混凝土却低一些。塑料通常大约1 GPA或更少。甚至更柔软的是橡胶和弹性体,仅在巨型范围内具有剪切模量。在最顶部,钻石达到了数百个千斤顶,是最僵硬的材料之一。 具有高剪切模量的材料强烈抵抗变形或扭曲。这就是为什么钢和钛合金在桥梁,建筑物和飞机框架等结构中至关重要的原因。它们的刚度可防止横梁和紧固件在重载下弯曲或剪切。玻璃和陶瓷虽然脆弱,但也受益于相对较高的模量。它可以帮助他们在镜头和半导体晶圆等应用中保持精确的形状。钻石具有很高的剪切模量,即使在大力下,也几乎没有弹性应变。这就是为什么钻石切割工具保持锋利的原因。 另一方面,当灵活性是一个优势时,选择具有低剪切模量的材料。橡胶和其他弹性体用于振动阻尼器,密封件和地震底座隔离器,因为它们的柔软度使它们可以轻松剪切并吸收能量。聚合物(例如聚乙烯或尼龙)在柔韧性和强度之间取得了平衡,这就是为什么它们被广泛用于轻质结构和耐冲击的部分。即使是木材等天然材料也会显示出强烈的方向差异:在整个谷物上,其剪切模量也远低于其沿谷物,并且建筑商需要考虑到这一点,以免在剪切力下裂开。 剪切模量计算 可以使用不同的测试方法来确定剪切模量G,并且选择取决于材料以及您是否需要静态还是动态值。对于金属和其他各向同性固体,一种常见的方法是在杆上或薄壁管上进行静态扭转测试。扭转角与施加扭矩的斜率给出了G。ASTME143指定了结构材料的室温程序。 对于动态测量,可以使用扭转摆:测量样品 - 质量系统的振荡周期,并将其与(复杂的)剪切模量相关联。 ASTM D2236是描述这种塑料方法的旧标准。 对于纤维增强的复合材料,使用V-网状方法(例如ASTM D5379(iosipescu))和ASTM D7078(V-Notched Rail剪切)获得了平面内剪切模量。 ASTM D4255(轨道剪切)也广泛用于聚合物矩阵复合材料。 请注意,ASTM A938是用于评估扭转性能的金属线的扭转测试(例如延性);它不是确定G的标准方法。 有时G不会直接测量G,而是根据其他数据计算得出的。用于各向同性材料杨的模量e和泊松的比例ν, g = e 2 (( 1 + […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español