在当今快节奏的制造环境中,塑料原型制作已成为将想法变成有形,可测试产品的重要一步。在承诺全面生产之前,企业依靠原型来验证设计意图,评估功能并有助于最大程度地减少以后生产阶段昂贵错误的风险。在许多情况下,执行良好的塑料原型是概念和商业可行产品之间的关键桥梁。
那么,如何创建塑料原型?它包括智能设计决策,合适的材料和合适的混合制造方法 - 我们将在本文中逐步分解所有这些。
塑料原型制作是使用塑料材料创建早期,物理模型或产品样品的过程。这些原型可帮助制造商在全面生产之前测试和完善产品的形式,拟合度,功能和美学。该过程使工程团队可以验证设计概念,确定潜在问题,收集用户反馈,并确保产品准备好并与市场需求保持一致。
根据设计的成熟度,原型可能看起来像,工作类似或与最终产品非常相似。但是“看起来像”和“像工作”并不是对原型进行分类的唯一方法。以下是用于对其进行分类的其他常见术语:
随着这些原型变得更加精致,它们会经过多个测试阶段,以确保生产准备。这些测试阶段对于验证设计完整性,性能和制造性很重要。

通常使用的测试有三种类型:
在产品开发周期(从早期概念验证到预生产测试)中,采用了不同的技术来满足各种目标。一些方法优先考虑快速迭代,而其他方法则旨在复制最终产品的质量和性能。在塑料原型中,四种广泛使用的制造方法在其独特的优势和多功能性方面脱颖而出。

3D打印或添加剂制造是一个伞术语,包括各种技术,这些技术通过从数字模型中添加材料来构建三维对象。这些技术支持快速的原型制作和多次迭代,并且可以产生复杂的几何形状,而无需模具或定制工具。以下是制造塑料原型的三种最受欢迎的方法:

真空铸造,也称为氨基氨烷铸造,是一种使用硅树脂霉菌和聚氨酯树脂的小体积制造方法,以产生具有高表面质量和细节的塑料零件。该过程始于高质量的3D打印主模型,该模型用于创建能够复制复杂几何形状和微妙的表面特征的柔性硅胶模具。
当设计成熟并且需要一小部分一致的原型时,该技术通常用于以后的原型制作阶段。它特别适合生产功能性原型,演示模型和拟合组件,例如套管,外壳或覆盖物。
特别是,真空铸造是一种具有成本效益的解决方案,用于生产10至100个单位用于工程验证测试。当需要多个相同的零件时,它通常提供的单位成本低于3D打印,尤其是用于短期复制。此外,硅胶模具比金属模具便宜,但寿命有限,通常每霉菌产生20至25个零件。

CNC加工塑料使用计算机控制的机床从实心块中删除材料。该过程支持紧密的公差并提供出色的可重复性,从而可以创建复杂的几何形状,包括细线,底切和其他复杂的特征。
CNC加工通常用于需要高准确性和强度的中级阶段功能原型。它为可靠的拟合,形式和功能测试提供了均匀的材料特性 - 不像3D打印,可能会遭受层间弱点的困扰。该过程还允许使用各种材料,使您可以灵活地选择满足特定需求的最佳选择。可用的服务包括铣削,转弯和齿轮滚动。
注射成型通常不是原型制作的首选,因为它需要很长时间,而且成本更高。但是,Chiggo可以在生产前的最终测试阶段快速,成本效率地生产钢模具,并以T1样品(生产工具生产的第一部分)的速度快速提供10天。
此外,当生产100个或更多的塑料原型时,使用铝制或具有标准模具底座的3D打印模具的快速转移方法可以降低时间和成本而不会牺牲质量,尽管它们通常提供较低的精度,并且不如钢模具耐用。
总体而言,四种塑料原型制定方法支持多种塑料树脂材料。但是,如下表所示,每种方法支持的内容存在差异。
| 材料 | 3D打印 | 真空铸造 | CNC加工 | 注入成型 |
| 腹肌 | 好的 | 好的 | 出色的 | 出色的 |
| 聚碳酸酯(PC) | 公平的 | 好的 | 好的 | 出色的 |
| 聚丙烯(PP) | 公平的 | 公平的 | 公平的 | 出色的 |
| 尼龙 | 出色的 | 好的 | 好的 | 好的 |
| 丙烯酸(PMMA) | 好的 | 出色的 | 公平的 | 好的 |
| 聚乙烯(PE) | 贫穷的 | 公平的 | 公平的 | 出色的 |
| 乳酸(PLA) | 出色的 | 公平的 | 公平的 | 公平的 |
| 热塑性聚氨酯(TPU) | 好的 | 好的 | 贫穷的 | 好的 |
| 多醚乙醚酮(PEEK) | 好的 | 贫穷的 | 出色的 | 出色的 |
| 乙酰(POM) | 公平的 | 好的 | 出色的 | 出色的 |
| 聚对苯二甲酸酯(PET) | 好的 | 公平的 | 好的 | 出色的 |
| 聚氯乙烯(PVC) | 公平的 | 好的 | 公平的 | 出色的 |
请记住:
1。真空铸造等级反映了类似PU树脂的可行性,而不是基碱基聚合物的直接铸造。
2。3D打印等级基于每种材料的最成熟和成本效益的添加剂过程:
3。相同的材料可以根据方法的不同。例如,由于结构差异,由CNC制造的ABS部分可能与注射量的强度或饰面不符。
4。始终将您的物质选择和制造方法与当前的测试阶段和性能目标保持一致。

接下来,我们将逐步解释如何构建塑料原型并在此过程中突出显示关键注意事项。
在进入技术过程之前,要确定原型的目的和预期使用至关重要。该应用程序将确定哪种类型的原型最合适:
一旦澄清了所需的原型类型,第二步就是创建一个CAD(计算机辅助设计)模型,该模型可作为原型的数字蓝图。 CAD模型定义了零件的几何形状,尺寸和组装接口。清晰且准备充分的CAD文件可以减少歧义,最大程度地减少生产错误并加速原型制作过程。
为了确保可制造性,您可以遵循以下几点:
设计完成后,选择一种适合您时间表,预算,材料需求和性能要求的原型方法。每种方法都提供独特的优势和权衡 - 有些有利于快速迭代,而其他方法则在功能测试或生产验证方面表现出色。下表根据成本,交货时间和适合不同开发阶段的适用性比较了四种常见的原型制作方法,以帮助您决定。
| 项目 | 3D打印 | 真空铸造 | CNC加工 | 注入成型 |
| 工具成本 | N/A。 | 低的 | N/A。 | 高的 |
| 单位成本 | 缓和 | 高的 | 高的 | 低的 |
| 数量 | 1-50 | 5-100 | 1-50 | 100岁及以上 |
| 交货时间 | 小时到几天 | 1-2周 | 3-7天 | ≥2周 |
| 塑料材料选择 | 缓和 | 好的 | 好的 | 出色的 |
| 早期原型 | 出色的 | 缓和 | 好的 | 贫穷的 |
| 审美的 | 好的 | 出色的 | 好的 | 出色的 |
| 形式和拟合原型 | 缓和 | 好的 | 好的 | 出色的 |
| 功能原型 | 缓和 | 好的 | 出色的 | 出色的 |
塑料原型制作是将您的设计桥接到生产中的关键步骤 - 它可以通过尽早确定设计问题,最小化返工并避免昂贵的工具变化来降低成本,最终帮助您加速您的市场道路。在Chiggo,无论您是需要单个原型,小规模的定制制作,还是准备朝着全面制造迈进,我们都可以覆盖您。我们经验丰富的工程师和设计师与您紧密合作,以优化设计并确保可以平稳地制造它。此外,我们没有最低订单要求。有一个想法吗?立即联系我们让我们将其栩栩如生!
几乎我们日常使用的每一种产品,从智能手机到汽车,其起源都可以追溯到制造过程。这些流程不仅决定产品的质量和生产效率,还直接影响企业的成本控制和市场竞争力。在本文中,我们将定义制造工艺,深入研究它们的类别和各种方法。现在让我们开始探索它们的广泛含义!
数控车削是应用最广泛的数控加工工艺之一,因其精度和多功能性而在制造业中备受推崇。它涉及一种固定切削刀具,用于从车床或车削中心上的旋转工件上去除材料。该工艺主要用于生产具有圆形或轴对称特征的零件。根据切割操作的类型,它可以创建圆柱形、圆锥形、螺纹、凹槽或孔部件,以及具有特定表面纹理的零件。
设计在数控加工中发挥着关键作用,因为它为整个制造过程奠定了基础。众所周知,数控加工使用计算机控制的机器来精确地从工件上去除材料。该工艺具有高度通用性、可重复性和精确性,此外,它还与多种材料兼容,从泡沫和塑料到木材和金属。 实现这些功能在很大程度上依赖于 CNC 加工的设计。有效的设计不仅可以确保零件的质量,还可以节省与 CNC 加工零件相关的生产成本和时间。 在本指南中,我们将讨论设计限制,并为 CNC 加工中遇到的最常见特征提供可操作的设计规则和建议值。这些指南将帮助您获得零件的最佳结果。 CNC 加工的设计限制 为了正确设计数控加工零件,我们首先必须清楚地了解工艺中固有的各种设计限制。这些限制自然是由切割过程的力学产生的,主要涉及以下几个方面: 刀具几何形状 大多数数控加工刀具具有圆柱形形状和有限的切削长度。当从工件上去除材料时,这些切削刀具会将其几何形状转移到零件上。这意味着,无论切削刀具有多小,CNC 零件的内角始终具有半径。此外,刀具的长度限制了可加工的最大深度。较长的工具通常刚性较低,这可能导致振动或变形。 工具访问 为了去除材料,切削刀具必须直接接近工件。切削刀具无法达到的表面或特征无法进行 CNC 加工。例如,复杂的内部结构,尤其是当零件内存在多个角度或特征被另一个特征阻挡或存在较大的深宽比时,可能会使工具难以到达某些区域。五轴数控机床可以通过旋转和倾斜工件来缓解一些刀具访问限制,但它们不能完全消除所有限制,特别是刀具振动等问题。 工具刚度 与工件一样,切削刀具在加工过程中也会变形或振动。这可能会导致公差更宽松、表面粗糙度增加,甚至在制造过程中刀具破损。当刀具长度与其直径之比增加或切削高硬度材料时,这个问题变得更加明显。 工件刚度 由于加工过程中会产生大量的热量和强大的切削力,刚性较低的材料(例如某些塑料或软金属)和薄壁结构在加工过程中容易变形。 工件夹持 零件的几何形状决定了它在数控机床上的固定方式以及所需的设置数量。复杂或不规则形状的工件很难夹紧,并且可能需要特殊的夹具,这会增加成本和加工时间。此外,当手动重新定位工件夹具时,存在引入微小但不可忽略的位置误差的风险。 CNC 加工设计指南 现在,是时候将这些限制转化为可操作的设计规则了。 CNC 加工领域没有普遍接受的标准,主要是因为行业和所使用的机器总是在不断发展。但长期的加工实践已经积累了足够的经验和数据。以下指南总结了 CNC 加工零件最常见特征的建议值和可行值。 内部边缘 建议垂直圆角半径:⅓ 倍型腔深度(或更大) 通常建议避免尖锐的内角。大多数数控刀具都是圆柱形的,因此很难获得锐利的内角。使用推荐的内角半径可以使刀具遵循圆形路径,从而减少应力集中点和加工痕迹,从而获得更好的表面光洁度。这也确保了使用适当尺寸的刀具,防止刀具太大或太小,从而保持加工精度和效率。对于 90 度锐角,建议使用 T 形槽铣刀或线切割,而不是减小拐角半径。 建议地面半径:0.5 毫米、1 毫米或无半径 可行的地面半径:任何半径 立铣刀刀具通常具有平坦或略圆的下切削刃。如果设计的底部半径与推荐值一致,则可以使用标准立铣刀进行加工。这种设计受到机械师的青睐,因为它允许使用广泛可用且易于使用的工具,这在大多数情况下有助于平衡加工成本和质量。虽然球头立铣刀可以适应任何底部半径,但由于其形状,它们可能会增加加工时间和成本。 薄壁 建议的最小壁厚:0.8 毫米(金属)、1.5 毫米(塑料) 可行的最小壁厚:0.5 毫米(金属)、1.0 毫米(塑料) 数控机床在加工非常薄的壁时受到限制,因为减小壁厚会影响材料的刚度并降低可达到的精度,可能会导致加工过程中振动增加。由于材料的硬度和机械性能不同,应根据具体情况仔细评估上述推荐和可行的值。对于更薄的壁,替代工艺(例如金属板制造)可能更可取。 洞 推荐孔径:标准钻头 […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español