轴承是支撑和引导旋转或移动部件(例如轴)的机械部件。它减少了摩擦并允许更平稳的旋转,从而降低了能耗。轴承还将载荷从旋转元件传递到外壳或框架,并且该载荷可以是径向的、轴向的或两者的组合。此外,轴承将零件的运动限制在预定方向,确保稳定性和精度。
从自行车踏板的旋转到汽车发动机的运行,从打开冰箱门的简单动作到电风扇电机的平稳运行,所有这些都依赖于轴承来提高效率。轴承堪称机械的“关节”。
在这篇文章中,我们将带您观察轴承的结构并探索它们的不同类型。通过本指南,我们相信您将更有信心为您的特定应用选择合适的轴承。
在进入轴承世界之前,我们首先需要熟悉轴承的基本定义、关键术语和分类。让我们首先探讨构成轴承的关键元素。
1. 轴承套圈/座圈
1) 对于向心轴承,轴承由容纳滚动体的内圈和外圈组成。这些环为滚动元件的移动提供结构和引导。
2) 对于推力轴承,使用术语“座圈”。
2.滚动元件
滚动元件是在环(或座圈)之间移动以减少摩擦的零件。它们承载负载并以最小的阻力传递负载。根据轴承的具体条件,例如支撑力的强度或旋转速度,使用不同类型的滚动元件,例如球或滚子。
球 | 滚珠轴承 | |
圆柱滚子 | 滚子轴承 | |
滚针 | ||
圆锥滚子(圆锥梯形) | ||
凸辊(桶形) |
3. 笼子
保持架使滚动体保持均匀间隔,防止滚动体之间接触并确保平稳旋转。 下面显示了两种最常见的笼子类型。
除了这些主要部件之外,为了确保稳定、顺畅的旋转,润滑剂也是必不可少的。适当的润滑可延长轴承寿命并提高效率。根据操作条件,润滑剂可以是油基或脂基。此外,许多轴承都配备密封件或防护罩,以保护内部组件免受灰尘、碎屑或湿气的污染,同时还有助于保留轴承内的润滑剂,以实现最佳性能。
轴承可以根据几个标准进行分类。以下是两种常见的分类。
1.按运动类型,轴承可分为滚动轴承和滑动轴承。 滚动轴承使用滚动元件来减少摩擦。相比之下,滑动轴承没有滚动元件,依靠表面之间的滑动运动。
根据滚动体的形状,它们可以进一步分为两大类型:球轴承和滚子轴承。下表简要介绍了两者的主要特点。
特征 | 滚珠轴承 | 滚子轴承 |
触点类型 | 点接触 | 线路联系 |
负载能力 | 较低的负载能力 | 更高的负载能力 |
摩擦 | 提供低摩擦,因此能量损失很少 | 比滚珠轴承摩擦力更高,但总体摩擦力仍然较低 |
稳定 | 重负载下稳定性较差 | 增强稳定性并降低振动 |
成本 | 一般比较实惠 | 通常更贵 |
应用领域 | 适用于高速应用(例如电动机、风扇) | 重型机械和汽车部件(例如变速箱、车轴)的理想选择 |
2、根据载荷方向,轴承可分为向心轴承和推力轴承。 向心轴承旨在支撑垂直于旋转轴的径向载荷。另一方面,推力轴承用于承受平行于旋转轴的轴向载荷。
轴承中的接触角是指连接滚动体(球或滚子)与滚道(内圈和外圈)之间的接触点的线与垂直于轴承轴线的平面之间形成的角度。该角度对于确定轴承的承载能力至关重要,特别是与径向和轴向载荷相关的能力。
接触角较大的轴承更适合承受轴向载荷(平行于轴承轴线的载荷)。另一方面,接触角较小的轴承对于主要径向载荷应用更为有效。
基于上一节讨论的轴承分类,我们将以上图为主要框架,系统地考察常见轴承的主要类型。
顾名思义,向心球轴承是主要设计用于有效处理径向载荷(垂直施加到轴上的力)的球轴承。通常,它们的接触角小于 15°。向心球轴承有许多子类型。在这里,我们重点关注三个常见的问题。
深沟球轴承
应用:非常适合主要具有径向载荷和中等轴向支撑的应用,提供高速和多功能性。它们通常用于电动机、风扇、鼓风机、电动工具和家用电器。
角接触球轴承
应用:用于发生径向和轴向联合载荷的场合,特别是需要较高的轴向载荷能力和精度时。它们常见于泵、压缩机、汽车零部件、数控加工工具主轴、工业机器人和精密机械。
自调心球轴承
应用:在轴偏转或对准问题常见的情况下很有价值,例如输送系统、轧钢厂和农业机械。
Radial roller bearings are roller bearings that can support a force perpendicular to the shaft. They can support an even greater load than radial ball bearings, and there are four major bearing types that are made to suit the type of roller.
圆柱滚子轴承
应用:常用于高速、重径向载荷环境,如传动轴、轧机和采矿设备。
滚针轴承
应用:常见于径向空间有限的领域,例如内燃机、摩托车、航空航天部件和机器人。
圆锥滚子轴承
应用:适用于刚性和稳定性至关重要的汽车轮毂、变速箱、建筑设备和精密机械。
调心滚子轴承
应用:重型应用,同时存在径向和轴向载荷,以及潜在的轴不对中。常见用途包括建筑设备、采矿机械、大型工业齿轮箱、纸浆和造纸厂以及风力涡轮机。
应用:我适用于以中等转速沿轴施加轴向载荷的应用,例如汽车离合器、变速箱、转台和转向系统。
应用:这些轴承用于高负载环境,例如齿轮箱、重型机械和船舶推进系统,这些环境中可能同时存在轴向和径向负载。
应用:非常适合具有潜在错位或振动的低速、重载应用,例如工业起重机和农业机械。
应用:磁力轴承非常适合需要高速、高精度和最少维护的应用,例如涡轮机械、能源系统和医疗设备。
1)如果载荷主要是径向的(垂直于轴),则使用向心轴承;如果载荷主要是轴向的(与轴方向相同),请使用推力轴承。轴向载荷也称为推力载荷。
2)如果轴承载荷较轻,则采用球轴承;如果负载较重,请使用滚柱轴承。
3) 如果同时承受径向载荷和轴向载荷(联合载荷),轻的联合载荷需要使用深沟球轴承或角接触球轴承,而重的联合载荷需要使用圆锥滚子轴承。
4) 如果从两个方向施加较大的轴向载荷,可以组合两个或多个轴承,或使用双列轴承。
1)一般来说,对于高速应用,深沟球轴承、角接触轴承和圆柱滚子轴承是合适的选择。对于较低速度的工况,圆锥滚子轴承和推力球轴承比较合适。
2)对于同一类型的轴承,尺寸越小,允许转速越高。选择轴承时,请确保运行速度在轴承的极限速度范围内,以免损坏。
3) 请注意,轴承的极限转速不仅受轴承类型和尺寸的影响,而且受其公差、保持架类型和材料、润滑剂类型和用量、润滑方法等因素的影响也很大。在。因此,如果您打算在高转速下使用轴承,请在做出决定之前咨询Chiggo。
1) ISO 标准和其他标准定义了边界尺寸精度(与轴承的配合和安装有关)和运行精度(涉及轴承的精度)的具体公差。轴承的旋转运动)在每个精度内类。
2) 对于大多数一般应用,0 级轴承足以提供足够的性能。
3) 对于旋转跳动精度要求较高的应用,应使用5级、4级或2级精密轴承。
1)轴承的刚性是指轴承在载荷作用下抵抗变形的能力。它直接受到接触面积和轴承内部游隙的影响。滚子轴承较大的接触面积(线接触)将载荷分布在更宽的表面上,因此,与点接触的球轴承相比,它们提供了更大的刚性。
2) 角接触球轴承、圆锥滚子轴承等轴承可以通过调整接触角或采用背靠背(DB)或面对面(DF)等配置来增加刚性。值得注意的是,DB 配置通常比 DF 配置提供更高的刚性。
3)内部游隙(滚动体与滚道之间的空间)也会影响刚性。较小的间隙允许更多的滚动元件接触滚道,增加接触面积,从而增加轴承的刚度。
4) 应用预加载将内部间隙稍微减小负值可确保所有滚动元件与滚道均匀接触。这种均匀的接触最大限度地减少了每个滚动元件弹性变形的变化,从而实现更均匀的载荷分布和增强的刚度。然而,必须仔细设置预紧力以避免负面影响,例如使用寿命缩短、温度升高或潜在的轴承故障(卡住)。
1)径向空间限制:如果可用的径向空间有限,请选择专为紧凑环境设计的轴承,例如滚针轴承或滚针和保持架组件。
2) 振动和噪声水平:对于具有严格振动和噪声要求的应用,例如消费电子或音频设备,深沟球轴承是一个不错的选择。
3) 环境条件:对于恶劣环境(例如多尘、腐蚀性或潮湿条件),请使用密封、屏蔽或由耐腐蚀材料制成的轴承(例如不锈钢或涂层轴承) )以防止污染物并确保耐用性。
4) 润滑和维护:在维护困难的应用中,请选择能够长时间保持润滑的密封或自润滑轴承,从而减少频繁维修的需要并最大限度地减少停机时间。
5) 安装和对中:选择轴承时,允许的不对中至关重要。 自调心球轴承采用球形外圈滚道设计,可适应较小的角度不对中(1-2度),使其适用于可能存在轴偏转或不对中的应用。
另一方面,带有圆柱或球面滚子的调心滚子轴承可以处理较大的不对中(2-3 度或更大)。此功能在遭受显着轴偏转、热膨胀或动态操作条件的应用中特别有用。
机械轴承是旋转设备和机械组件中的关键部件。它们有助于支撑操作力、减少摩擦并确保平稳、高效的操作。
选择正确类型的轴承时,您需要考虑负载能力、振动、噪音、尺寸等因素。还有许多其他细节可能会影响您的决定。如果您仍然不确定哪种轴承最适合您的需求,请随时咨询我们的工程师以获得专家建议。
在工业应用中,塑料与金属相比具有多种优势,包括轻质、耐腐蚀、设计灵活性、优异的电绝缘性以及较低的加工和维护成本。随着改性和高性能工程塑料的不断发展,许多传统的以金属为主的应用现已部分或完全被塑料取代。其中,ABS 因其均衡的机械强度、韧性、加工性能、表面光洁度潜力和成本效益而脱颖而出。它在塑料家族中占有重要地位,充当商品塑料和工程塑料之间的桥梁。
延展性是材料科学中的一个基本概念,它解释了为什么某些材料(例如金属)会在压力下显着弯曲或伸展,而另一些材料突然突然会弯曲。在本文中,我们将解释什么是延展性,如何测量,为什么重要以及哪些因素影响它。 延展性的定义 延展性是材料在断裂前张力造成塑性变形的能力。简而言之,可以将延性材料拉长很长的路,而无需捕捉 - 考虑将铜拉入电线中。相比之下,像玻璃这样的脆性材料几乎没有变形后倾向于破裂或破碎。在材料科学中,塑性变形是形状的永久变化。这与弹性变形不同,弹性变形是可以恢复的。延展性与可塑性密切相关,但更具体:可塑性是在任何模式(张力,压缩或剪切)下永久变形的一般能力,而延展性则是指张力的能力。 从原子的角度来看,许多金属的高延展性来自非方向金属粘结以及允许脱位移动的滑移系统的可用性。施加压力后,脱位滑行使金属晶体可容纳塑性应变,因此金属通常弯曲或拉伸而不是断裂。相比之下,陶瓷和玻璃具有定向离子或共价键,并且滑动非常有限,因此在张力下,它们在明显的塑料流动之前倾向于破裂。但是,并非所有金属在室温下都是延性的(例如,某些BCC金属,高碳钢和金属玻璃杯可能相对脆),并且加热玻璃弯曲的玻璃弯曲主要是由于其玻璃转换温度以上的粘性流量,而不是金属式耐耐耐高压。 测量延展性 拉伸测试是量化延展性的最常见方法:标本以单轴张力加载到骨折中,延展性据报道是休息时伸长率的百分比和降低面积的百分比。 休息时伸长百分比(a%) 骨折时量规长度的百分比增加:a%=(lf -l0)/l0×100%,其中l0是原始量规长度,而LF是断裂时的最终长度。较高的A%表示拉伸延展性更大。 减少面积百分比(RA%) 裂缝位置的横截面的百分比降低:RA%=(A0 - AF)/A0×100%,其中A0是原始面积,AF是休息时的最小面积。大的RA%反映出明显的颈部和强烈的颈后延展性。 (对量规长度不太敏感;对于非常薄的纸张而言并不理想。) 这两种措施通常是拉伸测试的一部分。例如,可以描述钢样品的伸长率20%,而在休息时降低了60%的面积 - 表明延性行为。相比之下,脆性陶瓷可能仅显示1%的伸长率,而本质上可能显示出0%的面积减少(几乎没有变薄)。伸长率和降低越大,材料的延展性就越大。 可视化延展性的另一种方法是在应力 - 应变曲线上,这是从拉伸测试获得的图。绘制应力(相对变形)的应力(每单位面积)。此曲线上的要点包括: 杨的模量(E):线性弹性区域的斜率;刚度的度量。 屈服强度(σᵧ):塑性变形的发作(通常由0.2%偏移方法定义时,当不存在尖锐的屈服点)。 最终的拉伸力量(UTS):最大工程压力。超越标本的脖子;断裂发生后期,通常处于较低的工程压力下。 断裂点:标本最终破裂的地方。 延性材料(蓝色)与脆性材料(红色)的代表性应力应变曲线 延性材料的曲线在屈服后显示长塑料区域,表明它可以在骨折前保持较大的应变。相比之下,脆性材料的曲线在屈服点附近结束,几乎没有塑料区域。总而言之,在工程应力 - 应变图(对于规定的规格长度)上,延展性反映了裂缝的总应变 - 延性材料的长时间,脆性材料的较短。但是,明显的断裂应变取决于所选的量规长,一旦颈部开始定位,颈部开始定位,因此工程曲线不是颈后延展的直接衡量。因此,规格通常在休息时报告百分比伸长率(a%)以及降低面积百分比(RA%)。 延展性和延展性有什么区别? 延展性是一种材料在不破裂而伸展张力的能力。我们以拉伸测试的伸长百分比或减少面积来量化它。如果可以将金属吸入电线,则是延展性的。锻造性是一种材料在压缩方面变形的能力(不开裂,可以锤击,滚动或压入纸板);我们通过弯曲/扁平/拔罐测试或减小厚度可以耐受多少判断。 实际上:黄金,铜和铝都是高度延展且可延展的(非常适合电线和纸板)。铅非常具有延展性,但仅适中延展性(易于滚动成薄片,较差,作为细丝)。镁在室温下的延展性有限,而锌在变暖时会更具延展性。为了制造制造,选择延性合金用于绘画,深度拉伸和下拉的功能;选择可延展的合金滚动,冲压和锻造,在压缩占主导地位的地方。温度和晶体结构移动两个特性。快速规则:延展性=张力/电线;锻造性=压缩/表。 为什么延展性很重要 延展性是制造性和服务安全性安全背后的安静主力。在工厂中,它允许将金属卷成纸板,将其拉入电线并锻造而不会破裂。在现场,它使组件能够吸收能量,重新分配应力并在失败前提供警告。 制造的延性材料 高延展性通常意味着一种材料是可行的:它可以锻造,滚动,绘制或挤出成各种形状而不会破裂。低延展性(脆性)意味着该材料很难变形,并且更适合于铸造或加工等过程(在材料不强迫塑料形状过多地改变形状)之类的过程中。 锻造和滚动:这些过程通过锤击(锻造)或在掷骰(滚动)之间将固体金属变形为形状。延性金属耐受涉及的大塑料菌株。实际上,钢板/开花被热卷成薄板,板和结构形状,例如I光束,铝很容易被伪造成组件 - 金属在压缩载荷下流动。相比之下,像铸铁这样的脆性合金倾向于在沉重的变形下破裂,因此通常通过铸造到近网状形式来形状。 挤出和电线/栏绘图:挤出将金属推动通过模具制作长而恒定的截面产品。电线/条形图将固体库存通过模具降低直径。两者都依靠塑料流。可以将延性合金(例如铝,铜和低碳钢)挤出到试管和轮廓(例如窗框,热水链截面)中,并将其抽入细线。在加工温度下没有足够的延展性的材料倾向于检查或裂缝,这就是为什么玻璃或陶瓷不会以固态挤出/绘制的原因;他们的纤维是融化的。 深图:深色绘图形成轴对称的杯子和罐,并用拳头迫使薄板进入模具;法兰向内进食,而墙壁略微稀薄。足够的延性可防止分裂和皱纹。铝饮料罐头是经典的例子。 薄板金属弯曲和冲压:车身面板和外壳的一般弯曲和冲压需要延展性,以避免边缘裂纹和橙色 - 薄荷伸展时。钢制和铝等级是针对形成性量身定制的,因此可以将复杂的形状(例如,汽车引擎盖)盖章而不会故障。 金属3D打印(AM):延展性仍然很重要。当然的零件(尤其是来自激光粉床融合(LPBF))可以显示出由于细,质感的微观结构,残留应力和孔隙率而显示出降低的延展性。压力缓解和热等静止压力(髋关节),然后经常进行轻热处理,恢复延展性并降低开裂风险;然后,TI-6AL-4V和ALSI10MG等合金可以提供有用的服务延展性。 现实世界应用的延性材料 延展性不仅是实验室指标,还直接影响现实世界结构,车辆和设备的性能。这就是为什么它在工程和设计中重要的原因: 防止突然失败并提高安全性:延性材料逐渐失效:它们在断裂前产生和吸收能量,提供可见的警告并允许负载重新分配。在建筑物中,这就是为什么结构钢受到青睐的原因 - 超负荷的梁会弯曲而不是捕捉。钢筋混凝土遵循相同的逻辑:嵌入式钢钢筋增加延展性,因此成员可以在地震需求下弯曲而不是分开。 影响(地震和碰撞应用)中的能量吸收:在动态载荷下,延展性将影响能量变成塑料工作。钢框通过屈服来消散地震力,并以钢或铝折叠的汽车碎区域的控制方式以受控的方式降低机舱减速。现代人体结构平衡强度与延展性(例如DP/Trip Steels),并且航空航天Al/Ti合金保留足够的延展性,以造鸟,加压和冷soak耐受性。 […]
压力和压力是描述材料对力的反应方式的两个最重要的概念。应力是负载下材料中每单位区域的内力,而应变是由施加力引起的材料形状的变形或变化。 但是,压力与压力之间的关系远远超出了理论 - 这对于合理的工程决策至关重要。通过并排比较它们,我们可以更好地预测材料的性能,可以安全变形的程度以及何时失败。本文探讨了他们的定义,差异,关系和实际应用。 在我们详细了解详细信息之前,您可能会发现此简短的介绍性视频和压力很有帮助: 什么是压力? 压力是材料产生以抵抗外部负载的每单位面积的内力。从显微镜上讲,施加的载荷会引起反对变形并“固定”结构的原子间力。这种内部阻力是我们衡量的压力。 根据如何施加负载,压力被归类为: 拉伸应力(σt)和压力应力(σc):这些是垂直于横截面区域的正常应力。 剪切应力(τ):由与横截面区域平行作用的切向力引起的。 扭转应力(τt):扭矩或扭曲引起的剪切应力的特定形式。 其中,拉伸压力是工程设计中最根本的压力类型。计算公式是: 在哪里: σ=压力(PA或N/m²;有时PSI) f =施加力(n) a =施加力的原始横截面区域(m²) 如何测量材料的应力 直接测量应力是不可能的,因此,我们必须测量施加的力或结果变形。以下是关键测量技术的简洁概述: 方法 /技术原则测量设备 /工具准确性和精度常见应用通用测试机(UTM)测量力(F),计算应力= f/aUTM具有集成负载电池★★★★★(高精度)基本材料测试:应力 - 应变曲线,机械性能评估应变量表测量应变(ε),通过σ= E·ε计算应力(假设线性弹性) 应变计,数据采集系统★★★★☆(高)组件应力分析;疲劳评估;嵌入式结构监测延伸计衡量规格的变化,计算ε和σ接触或非接触式延伸仪★★★★☆(高)标本的拉伸测试;验证弹性模量和屈服应变数字图像相关(DIC)光学方法,跟踪全场表面变形高速相机系统,DIC软件★★★★☆(全场)全场应变分析;裂纹跟踪;物质不均匀研究超声应力测量在压力下使用材料的波速变化超声波探测器★★★☆☆(中度)残余应力检测;焊接接头和大型结构的应力监测X射线衍射(XRD)测量由内部压力引起的晶格失真XRD衍射仪,专业软件★★★★☆(高精度;位于表面层)薄膜,焊接区域,金属和陶瓷中的表面残留应力光弹性通过光学干扰条目在透明双折射材料中可视化压力偏振光设置和双重聚合物模型★★★☆☆(对半定量定性)教育演示;透明模型中的实验应力分析微/纳米级表征技术 EBSD,微拉曼,纳米凹陷等技术提供微观或纳米级应变/应力映射 电子或基于激光的系统,图像分析软件★★★★☆(高精度;局部微/纳米尺度) 微电子,薄膜,纳米构造,复合界面行为 什么是应变? 应变是对材料进行外力时材料发生的相对变形的量度。它表示为无单位数量或百分比,代表长度(或其他维度)对原始长度(或尺寸)的变化。 应变的类型对应于施加的应力:拉伸应变,压缩应变或剪切应变。 正常应变的公式是: 在哪里: ϵ =应变(无量纲或以%表示) Δl=长度变化 l0=原始长度 如何测量材料应变 各种方法可用于测量应变。最常用的技术是应变测量值和伸展指标。下表总结了测量材料应变的常见方法: 方法感知原理传感器 /传感器测量场景评论应变量表阻力变化箔型应变量表静态或低频应变;常用广泛用于行业;低成本;需要粘合键和布线连接延伸计位移夹式 /接触式延伸计材料测试;全截面测量高准确性;不适合动态测试或高度局部应变数字图像相关(DIC)光学跟踪相机 +斑点图案全场应变映射;裂纹繁殖;复杂形样品非接触; 2D/3D变形映射;昂贵的系统压电传感器压电效应压电膜或水晶动态应变,压力,冲击,振动高频响应;不适合静电测量纤维bragg光栅(FBG)光学(布拉格反射)FBG光纤传感器长距离的分布式或多路复用测量免疫EMI;适合航空航天,能源和智能结构激光多普勒振动仪(LDV)多普勒效应LDV激光探针动态应变/速度测量和表面振动分析非接触;高分辨率;昂贵的;对表面条件敏感 压力与应变的关键差异 以下是一个简短的表,提供直接概述: 方面压力拉紧公式σ= f / aε=Δl /l₀单位PA(N/m²)或PSI(LBF/in²)无量纲或%原因外力压力引起的变形影响产生内力来抵消外部负载;如果过高改变材料的几何形状;可在弹性极限内回收,永久性超出产量点行为材料必须抵抗的每个区域的内力。根据分配,它可能导致压缩,张力,弯曲或扭转描述了在施加的应力下材料变形的程度。可以是弹性的或塑料的 压力和压力如何相互关系 压力会导致应变。应力 - 应变曲线图可以通过针对施加的应力绘制应变(变形)逐渐增加载荷的变形。让我们回顾一下其要点: 1。弹性区域(点O […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español