在日常生活中,我们经常会遇到各种物体上有倒角和圆角的设计。例如,家用电器、家具和儿童玩具的边缘通常都有倒角或圆角,以防止我们被刮伤或受伤。同样,我们使用的消费电子产品也经常采用倒角和圆角来增强视觉吸引力和触觉体验。出于安全、美观和功能等原因,这两种工艺都广泛应用于制造中,以修改产品的边缘。
但圆角和倒角有什么区别呢?大多数人都会想到两者之间的几何差异。然而,在工程设计和制造中,区别不仅仅是简单的形状。定义倒角与圆角需要了解它们如何影响产品的功能、可用性和制造过程。在本文中,我们将仔细研究它们的差异,并探索每个功能最适合的设计场景。

倒角是零件上的倾斜或斜角边缘,通常以 45 度角或其他指定角度切割。这种设计消除了尖角,并在两个表面相交处创建了一个平坦的、有角度的表面。
想象一下拿起一个螺栓并注意其末端的斜边 - 这就是倒角在起作用。这种轻微的角度切割不仅使螺栓外观整洁,而且通过去除可能造成伤害的尖角,使操作更安全。倒角边缘可减少应力集中,防止螺栓在负载下时出现裂纹或断裂。它还可以将螺栓顺利地引导到螺母或螺纹孔中,从而简化组装并确保所有部件都恰到好处地装配在一起。

倒角可以使用手动工具手动创建,或者更精确地使用数控加工、激光切割或磨削等自动化流程创建。它们在组装过程中引导螺栓、螺钉、销钉和齿轮等机械部件,并充当电路板、插槽和连接器等物品的插入导向装置。在焊接中,特别是对于 V 形接头或需要更深的焊缝时,倒角可为焊接材料提供额外的空间,从而实现更坚固的焊缝并提高结构完整性。

圆角是一种设计功能,它在两个相交曲面之间引入平滑的圆角过渡,在内角上形成凹曲线,在外角上形成凸曲线。
以现代家具为例:许多桌子在桌面与侧面相交处都有圆角,从而形成圆形或弯曲的边缘。这种设计不仅增添了柔和、诱人的美感,而且还具有实用性——消除可能造成伤害的尖角,尤其是在有孩子的家庭或繁忙的环境中。此外,圆角有助于更均匀地分配重量和压力,增强桌子的结构完整性,并使其更能抵抗时间推移造成的损坏。
可以使用多种主要方法创建圆角,其中机械加工和 3D 打印是最常见的两种方法。机械加工涉及使用铣床或车床等工具在相交表面之间切割出精确的圆形路径。在 3D 打印中,圆角设计直接集成到数字模型中并在打印过程中形成。这样就可以创建各种尺寸和形状的复杂鱼片,并且几乎不需要后处理。
现在您已经了解了倒角和圆角的外观以及它们的使用方法。在本节中,我们将解释它们之间的主要区别,以帮助您在零件设计中实现所需的形状。
最明显的区别是它们的形状。倒角具有倾斜的平坦表面,可在两个表面之间创建直线过渡,而圆角则具有平滑的曲线过渡。倒角使产品具有锐利的工业外观和清晰的几何边缘,而圆角则通过圆形轮廓提供更柔和、更抛光的外观。
值得注意的是,虽然术语“斜角”和“倒角”经常互换使用,但两者之间存在明显的区别。与覆盖两个平行表面之间平面的一部分的倒角边缘不同,斜角边缘适用于因此,与倒角边缘相比,通常需要去除更多的材料来创建斜角边缘。

圆角的制造通常更加昂贵且耗时,因为它们涉及切割弯曲半径,特别是在使用铣削工艺时。生产圆角通常需要根据半径尺寸使用特定的工具,并且不同的半径需要不同的工具,这会增加生产的复杂性。
相比之下,倒角的生产通常更快、更便宜。它们只需要直边切割,这更简单,通常可以使用基本工具甚至手工完成。通过调整切削深度或刀具路径,可以使用单一刀具创建不同尺寸的倒角,进一步降低成本。
▪安全性:虽然倒角软化了锋利的边缘,但它仍然可能会留下一些锐度,尤其是在过渡点处。相比之下,圆角通过完全消除尖角提供更安全的处理。
▪ 应力分布:与尖角相比,倒角可以在一定程度上帮助分布应力,但无论斜角的角度如何变化,在倒角与零件轮廓相交的地方仍然会形成尖角,在某些应用中应力集中并增加变形的风险。另一方面,圆角可以在零件上更均匀地分布应力,减少材料变形的可能性,使其成为高应力区域的理想选择。
▪ 流动动力学:圆角具有光滑、弯曲的形状,可减少流体流过时的湍流和阻力。在通道、管道或任何需要平滑流体流动的系统等应用中,圆角可有效减少涡流和压力损失,从而提高整体流动效率。相比之下,倒角的平坦、有角度的边缘会引入更突然的过渡,这可能导致湍流和不规则流动,从而增加阻力。
您已经了解了倒角和圆角之间的差异,但让我们更深入地了解您想要选择其中之一的情况。为了清楚起见,让我们从下表开始:
| 要求/注意事项 | 倒角 | 鱼片 |
| 集会 | 便于对齐和安装具有角度边缘的零件。 | 通常不用于组装。 |
| 应力分布 | 对于应力分布效果较差。 | 通过平滑、圆润的过渡减少应力集中并增强耐用性。 |
| 美学 | 营造出带有锐角的现代工业外观。 | 提供更柔和、抛光的外观和光滑的边缘。 |
| 加工复杂性 | 加工更容易、成本更低,尤其是大批量加工。 | 可能需要复杂的工具和更高的成本。 |
| 边缘安全 | 去除锋利边缘以降低受伤风险。 | 平滑尖角,提高舒适度和安全性。 |
| 流动效率 | 对于流动动力学效果较差。 | 通过平滑过渡改善流体或气体流动。 |
| 机加工成本 | 一般比较便宜。手工切割零件时,倒角的成本稍微便宜一些。 | 如果是铣削的话,圆角的成本相对来说比倒角的要高一些。 |
在圆角和倒角之间进行选择取决于与设计、功能以及 CAD 绘图或机械设计中的制造和装配注意事项相关的各种因素。在这里,我们总结了一些对您的项目或您的决策有帮助的常见情况:
▪涉及装配和配合零件:当零件需要与其他组件精确装配在一起时,倒角边缘是最佳选择。它们引导配合部件,确保无缝连接。例如,倒角孔为销、螺钉、螺栓或其他紧固件提供更平滑的引入。
▪ 成本效率优先:倒角边缘的生产通常比圆角更具成本效益。它们可以使用更简单的工具在一次运动中进行加工,而圆角通常需要专用工具和多次走刀才能获得所需的曲线。对于外表面和平面尤其如此,其中倒角因其简单性和成本效益而受到青睐。
然而,值得注意的是,对于内部空腔,圆角通常更受青睐。这是因为像立铣刀这样的切削工具自然会在拐角处留下半径,而倒角内腔可能需要更复杂和更昂贵的技术,例如 EDM(放电加工),才能获得精确的锋利边缘。

▪ 需要具有清晰几何边缘的工业外观:倒角不仅具有功能性,而且还有助于产品的视觉设计。它们通常给人一种现代或工业美感,其特点是尖锐的、有棱角的过渡。这些清晰的边缘强调几何设计,形成明确且有目的的形式。这在智能手机和笔记本电脑等消费电子产品中尤其明显,这些电子产品的外壳和按钮上普遍存在倒角边缘。
▪ 承受重载的零件:当零件预计承受重载或承受高应力时,圆角是更好的选择。圆角有助于将应力均匀分布在更大的区域,降低裂纹和变形的风险,使零件更耐用,能够承受更大的负载。
▪ 性能优势超过成本:虽然圆角边缘的制造成本较高,但当它们的优势对您的应用至关重要时,它们是更好的选择。例如,在流体或气体流动系统中,圆角提供平滑、弯曲的过渡,从而减少湍流和阻力,提高管道、通道和其他平滑流动至关重要的组件的流动效率。
▪ 需要更柔和、更抛光的外观:圆形边缘通常被认为更美观、更专业。它们是消费品或工业设计中可见部件的热门选择,其中更柔和的外观可以增强产品的整体外观和感觉。
▪ 安全第一:在锐边对用户或操作员构成安全风险的情况下,最好使用圆角。圆形边缘可降低搬运或组装过程中受伤的风险,使圆角成为手动工具、消费品和安全关键设备的常见特征。
▪保护涂层和耐腐蚀性很重要:圆角可以均匀地涂覆涂层和油漆,确保更好的覆盖和防腐蚀。它们的弯曲表面可防止涂层薄或不均匀时形成锐利边缘,使鱼片成为暴露于潮湿或化学品环境中的良好选择。

选择正确的边缘处理(无论是倒角还是圆角)是零件设计中的关键决策。当成本控制或快速生产至关重要时,倒角更易于制造和组装,是理想的选择。相比之下,圆角提供更好的应力分布和增强的耐用性,使其非常适合需要承受高应力或复杂条件的零件。平衡这些功能和制造考虑因素是设计高效且具有成本效益的零件的关键。
Chiggo 理解这一决定的重要性,并愿意为您提供帮助。无论您的设计包含倒角、圆角还是两者的巧妙组合,我们都可以灵活调整。 上传您的设计以获得快速报价和免费的可制造性设计 (DFM) 分析。
在比较合金钢和不锈钢时,出现了一个常见的混乱点:尽管不锈钢在技术上是一种合金钢,但通常被视为独特的类别,并在材料选择过程中与其他钢选择分别进行了比较。为什么是这样,您应该为项目选择哪种材料?为了回答这些问题,它有助于首先了解合金钢是什么,并探索其包含的各种类型。
从微型电子产品到重型工业系统,几乎每件硬件都依赖机械紧固件才能有效运行。本文深入探讨了紧固件及其广泛的应用。准备好仔细看看了吗?加入我们,一起发现: 什么是紧固件? 不同类型的紧固件及其用途 用于制造紧固件的材料 如何为您的项目选择合适的紧固件 什么是紧固件? 紧固件是一种用于将两个或多个物体机械连接或固定在一起的硬件设备。它涵盖了广泛的工具类别——螺钉、螺母、螺栓、垫圈、铆钉、锚栓和钉子等各种形式。 大多数紧固件可以轻松拆卸和重新组装,而不会损坏螺钉和螺栓等部件。它们形成非永久性关节,但这并不意味着该关节很弱;事实上,如果安装正确,它们可以承受很大程度的压力。 此外,还有焊接接头和铆钉等紧固件,它们可以形成不易拆卸的永久结合。根据应用的不同,紧固件有各种形状、尺寸和材料,每种都有其独特的功能和用途。我们将在下面的段落中研究这些以及更多内容。 不同类型的紧固件及其用途 如上所述,紧固件有多种形式。每种类型都根据其设计和功能满足独特的应用。以下是紧固件主要类型、子类型和具体用途的详细分类。 类型 1:螺丝 螺钉是高度通用的紧固件,具有头部和螺纹杆,可提供强大的抓地力和抗拉力。它们有各种头部形状(例如扁平、圆形或六角形),可以适应不同的工具和审美需求。 与螺栓不同,许多螺钉(例如自攻螺钉)可以在材料中创建自己的螺纹,而无需预先钻孔。使用螺丝刀或电钻等简单工具即可快速安装,并且不需要螺母进行紧固。螺钉与多种材料兼容,包括木材、塑料和薄金属。一些最常见的包括: 木螺丝 顾名思义,木螺钉通常是部分螺纹的,专门设计用于连接木块。它们具有锋利的尖端和粗螺纹,使它们能够轻松穿透木材并提供牢固的抓握。 机械螺丝 与木螺钉相比,这些螺钉具有更细的螺纹,这使得它们更适合金属和刚性复合材料等硬质材料。它们具有一致的柄直径,尖端没有锥形。通常,机器螺钉插入预先钻好的螺纹孔中或与螺母配对以进行安全组装。 金属板螺丝 金属板螺钉是自攻螺钉专为薄金属板(如金属板)和其他薄材料而设计。它们具有全螺纹柄和锋利的螺纹尖端,可以轻松地将螺纹切削到薄金属中。 自钻螺钉 自钻螺钉采用金属板螺钉的全螺纹设计,但配有钻头形状的尖端。这一独特的功能使它们能够直接钻入钢或铝等硬质基材,而无需预钻孔。它们对于固定较厚的金属材料特别有效,可提高效率并易于安装。 甲板螺丝 与主要用于室内或受保护的木材连接的木螺钉不同,甲板螺钉是专门为室外应用而设计的木螺钉。它们通常由不锈钢、镀锌钢或具有特殊防腐涂层的材料制成。甲板螺钉通常具有全螺纹柄,有些设计采用双螺纹或特殊螺纹,以适应温度和湿度波动引起的膨胀、收缩和应力。 六角拉力螺钉 六角拉力螺钉是大型木螺钉,设计为用扳手或套筒而不是螺丝刀驱动。它们具有粗粗螺纹和六角头,可提供出色的扭矩,是最坚固的金属和木材紧固件之一。由于这些螺钉的尺寸和强度,需要预先钻好导向孔。由于其处理重负载的能力,它们非常适合框架、甲板和重型家具等结构应用。 类型 2:螺栓 螺栓与螺钉具有相似的结构,具有从尖端开始的外外螺纹。与螺钉不同,螺栓不是自攻螺纹,也不会在材料中切出螺纹。相反,它们与预攻丝孔或螺母配合使用,以形成坚固的机械接头。以下是最流行的螺栓类型: 六角头螺栓 六角头螺栓有六角头;这种设计使它们可以使用标准扳手或电动工具轻松拧紧或松开,从而确保高效的组装和拆卸。它们带有机器螺纹,可以完全或部分沿螺栓长度延伸。全螺纹螺栓在需要强夹紧力的应用中表现出色,而部分螺纹螺栓凭借其光滑的杆部,可为横向承载应用提供卓越的剪切强度。 马车螺栓 马车螺栓有一个圆形凸形金属头,后面是方颈和螺纹轴。方颈设计用于锁定在材料内,防止螺栓在安装过程中旋转并确保稳定性。这些螺栓主要用于木材应用,例如木框架或家具组装。 吊环螺栓 吊环螺栓一端具有圆形环(或“吊环”),另一端具有螺纹杆。螺纹端拧入表面,而环可以轻松连接或悬挂物体。这些螺栓通常用于需要拉力的应用,例如提升重物或将绳索和电缆固定到结构上。 内六角螺栓(内六角螺栓) 这些类型的紧固件通常具有圆柱形头部,该头部带有用于驱动工具的六角形凹槽。可以使用内六角扳手或六角扳手来拧紧。与传统螺栓(例如带有外驱动头的六角螺栓)相比,内六角螺栓具有更小、更紧凑的头部。这种设计允许在狭小或有限的空间中应用高扭矩。 U 型螺栓 U型螺栓的形状像“U”形,杆部两端都有螺纹。它们可以缠绕管道或其他圆柱形物体,将它们固定在平坦的表面或结构上,而不会对管道造成永久性损坏或影响流体流动。 双头螺栓 双头螺栓,或双头螺栓,两端都有螺纹,中间有一个无螺纹的杆部。它们用于从两侧固定两个或多个零件,通常用于需要双端紧固的法兰组件或结构连接等应用。这些螺栓可以在其一端或两端使用螺母。 类型 3:坚果 螺母是螺栓不可或缺的伙伴。这些紧固件具有内螺纹,与螺纹尺寸和螺距相匹配的螺栓配对,以确保牢固的夹紧和增加的扭矩。与螺栓和螺钉一样,螺母也有各种形状和尺寸。以下是一些最常见的坚果类型: 六角螺母 作为标准六面螺母,六角螺母是最常见的类型,适用于通用紧固。它们很便宜,您可以使用扳手或钳子轻松组装它们。 尼龙锁紧螺母 尼龙锁紧螺母与后继结构的六角螺母类似,但具有一个额外的轴环,可容纳尼龙环或金属嵌件。这种设计有效防止高振动环境下的松动。 城堡螺母(开槽螺母) 城堡螺母的顶部切有槽,类似于城堡的城垛。这些槽与螺栓或螺柱上的预钻孔对齐,螺母就位后,可以将开口销插入孔中以将其固定,防止松动。 法兰螺母 法兰螺母与六角螺母类似,但底部有一个宽法兰,可用作内置垫圈。这种设计有助于将负载均匀分布在更大的区域,降低连接材料损坏的风险并增强螺母的抓力。 盖形螺母(盖形螺母) […]
在工业应用中,金属的选择不仅受强度,硬度和密度等机械性能的影响,而且还受热特性的影响。要考虑的最关键的热特性之一是金属的熔点。 例如,如果金属融化,炉件,喷气发动机燃料喷嘴和排气系统可能会灾难性地失败。结果可能会堵塞孔或发动机故障。熔点在制造过程中也至关重要,例如冶炼,焊接和铸件,金属需要以液态形式进行。这需要设计旨在承受熔融金属的极热的工具。即使金属在熔点以下的温度下可能会遭受蠕变引起的裂缝,但设计人员在选择合金时通常会使用熔点作为基准。 金属的熔点是什么? 熔点是在大气压下固体开始过渡为液体的最低温度。在这种温度下,固体和液相都在平衡中共存。一旦达到熔点,直到金属完全融化,额外的热量就不会增加温度。这是因为在相变期间提供的热量用于克服融合的潜热。 不同的金属具有不同的熔点,这些熔点取决于它们的原子结构和粘结强度。紧密包装原子布置的金属通常具有较高的熔点。例如,钨在3422°C时具有最高之一。金属键的强度会影响克服原子之间的吸引力并导致金属融化所需的能量。例如,与铁和钨等过渡金属相比,铂和黄金等金属的熔点相对较低,因为它们的粘结力较弱。 如何改变金属的熔点? 金属的熔点通常在正常条件下是稳定的。但是,某些因素可以在特定情况下对其进行修改。一种常见方法是合金 - 将其他元素添加到纯金属上,形成具有不同熔点的新材料。例如,与纯铜相比,将锡与铜混合以产生青铜的熔点。 杂质也可以产生明显的效果。即使是痕量的外国元素也会破坏原子键并转移熔化温度,这取决于物质。 物理形式也很重要。纳米颗粒,薄膜或粉末形式的金属通常在温度较低的情况下融化,因为其高表面积和原子行为改变了它们的散装。 最后,极端压力可以改变原子相互作用的方式,通常通过压缩原子结构来提高熔点。尽管这在日常应用中很少关注,但它成为材料选择和安全性评估的关键考虑因素,例如航空航天,深度钻探和高压物理学研究。 金属和合金熔点图 普通金属和合金的熔点 金属/合金熔点(°C)熔点(°F)铝6601220黄铜(Cu-Zn合金)〜930(组成依赖性)〜1710青铜(Cu-Sn合金)〜913〜1675碳钢1425–15402600–2800铸铁〜1204〜2200铜10841983金子10641947年铁1538年2800带领328622镍14532647银9611762年不锈钢1375–1530(依赖级)2500–2785锡232450钛1670年3038钨〜3400〜6150锌420787 金属熔点的完整列表(高到低) 金属/合金熔点(°C)熔点(°F)钨(W)34006150rhenium(re)31865767osmium(OS)30255477坦塔尔(TA)29805400钼(MO)26204750niobium(NB)24704473虹膜(IR)24464435松(ru)23344233铬(CR)1860年3380钒(V)19103470rh1965年3569钛(TI)1670年3040钴(CO)14952723镍(NI)14532647钯(PD)1555年2831铂(PT)1770年3220thor17503180Hastelloy(合金)1320–13502410–2460inconel(合金)1390–14252540–2600Incoloy(合金)1390–14252540–2600碳钢1371–15402500–2800锻铁1482–15932700–2900不锈钢〜1510〜2750莫内尔(合金)1300–13502370–2460铍(BE)12852345锰(MN)12442271铀(U)11322070杯子1170–12402138–2264延性铁〜1149〜2100铸铁1127–12042060–2200黄金(AU)10641945年铜(CU)10841983银(AG)9611761年红色黄铜990–10251810–1880青铜〜913〜1675黄色黄铜905–9321660–1710金钟黄铜900–9401650–1720硬币银8791614年纯银8931640年锰青铜865–8901590–1630铍铜865–9551587–1750铝青铜600–6551190–1215铝(纯)6601220镁(mg)6501200p pl〜640〜1184锑(SB)6301166镁合金349–649660–1200锌(Zn)420787镉(CD)321610鞭毛(BI)272521巴比特(合金)〜249〜480锡(SN)232450焊料(PB-SN合金)〜215〜419硒(SE)*217423ind157315钠(NA)98208钾(K)63145gall〜30〜86剖记(CS)〜28〜83汞(HG)-39-38 关键要点: 高熔点金属(例如钨,rhenium和tantalum)对于极端热量应用至关重要。这些金属在苛刻的炉子和航空航天环境中保留其结构完整性。钼也可以抵抗熔化,并且对于建造高温熔炉非常有价值。 铁,铜和钢等中等熔点金属将可管理的熔融温度与良好的机械或电气性能结合在一起,使其用于构造,工具和电气系统的多功能。 低熔点金属,例如炮,铯,汞,锡和铅,对于焊料,温度计和低熔合合金等专业应用而言是有价值的。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español