アルミニウムは、さまざまな産業でさまざまな目的で一般的に使用される非鉄金属です。航空機の部品から複雑な家庭用電化製品に至るまで、アルミニウムの多用途性は比類のありません。そのユニークな特性と適応性により、軽量で耐久性があり、精密に設計されたコンポーネントを製造するための CNC 加工におけるトップの選択肢となっています。
しかし、なぜ CNC 加工に最適なのでしょうか?これに答えるために、アルミニウムの起源とその合金の役割から始めましょう。

アルミニウムは、地球の地殻に最も豊富に存在する金属元素です。国際アルミニウム協会によると、世界の一次アルミニウムの年間生産量は、2023 年に約 6,700 万トンに達しました。他のほとんどの金属と同様、アルミニウムは鉱石として、主にボーキサイトの形で地殻に存在します。工業用にアルミニウムを抽出するには、2 段階のプロセスが採用されます。まず、バイエル法を使用して、ボーキサイトをアルミナ (酸化アルミニウム) に精製します。次に、アルミナを電気分解して純粋なアルミニウムを生成します。
純アルミニウム (99% 以上) は軽量で展性があり、ほとんどの腐食に対して耐性があり、非磁性であり、熱と電気の優れた伝導体です。ただし、ほとんどの商用アプリケーションには弱すぎます。
この制限を克服するために、アルミニウムをマグネシウム、シリコン、亜鉛、銅などの元素と組み合わせて合金を形成します。これらの合金は、アルミニウムの自然な特性をさらに強化します。さらに、合金元素の組成を調整することにより、アルミニウム合金の特性をさまざまな用途の特定の要件を満たすように調整できます。
次に、CNC 加工にアルミニウムを使用する主な利点を詳しく見てみましょう。

アルミニウムは、柔らかく延性があるため、機械加工が最も簡単な金属の 1 つです。メーカーは、スチールやチタンなどの他の一般的な加工材料よりも 3 倍、さらには 4 倍の速度で加工できます。これは、必要な労力と時間が減り、結果的に生産コストが削減されることを意味します。
さらに、アルミニウムのスムーズな切断動作により、きれいな切りくずが生成され、切断プロセス中の干渉が最小限に抑えられます。これにより、複雑な形状や厳しい公差の正確な製造が容易になります。加工中の変形リスクが低いため高精度が保証され、これは航空宇宙や医療機器などの産業における精密用途に特に価値があります。
アルミニウムは密度が鋼鉄の約 3 分の 1 ですが、強度に優れています。この高い強度対重量比により、自動車、電車、航空機、船舶などの輸送業界で広く使用されています。燃料効率がより優先されるにつれて、外装パネルや内部構造の構造においてより重い金属に代わってアルミニウムがますます使用され、耐久性や強度を犠牲にすることなく軽量化に貢献しています。
アルミニウムは空気にさらされると自然に保護酸化層を形成し、さらなる腐食を防ぎます。この固有の特性により、多くの用途で他の材料に必要となる、重くて高価な防食コーティングの必要性が回避されます。
アルミニウムの耐食性はグレードによって大きく異なり、酸化や化学的損傷に耐える能力に依存することに注意することが重要です。このトピックについては後ほど詳しく説明します。
アルミニウムは、電気的にも熱的にも非常に伝導性の高い材料です。電気的には銅に次ぐ導電率を誇ります。これが、ケーブル、送電、電子機器などの用途、特に軽量の材料が必要とされる用途でアルミニウムが非常に人気がある理由です。
アルミニウムは熱的にも優れた性能を発揮し、熱伝導率は銅の約 60% です。これは、CNC 加工中の過剰な熱の蓄積を防ぐのに役立ち、電子ヒートシンク、自動車エンジン部品、空調システムなどの用途でも役立ちます。
低温で脆くなり強度が低下する一部の材料とは異なり、アルミニウムは氷点下の条件でも機械的特性を良好に維持します。この特性は、宇宙産業や極低温タンクやシステムなどの用途の液化ガス貯蔵において不可欠です。

機械加工されたアルミニウム部品は、スマートフォン、ラップトップ、タブレット、フラットスクリーン TV などの家電製品で特に人気があります。これは、その強度と軽量性だけでなく、その美しさによるものでもあります。アルミニウムは本来、滑らかな銀色の表面を備えており、塗料や色合いを非常によく受け入れます。さらに重要なことは、アルミニウムは、部品上の保護酸化物層を厚くするプロセスである陽極酸化に最適であるということです。
陽極酸化により、機械加工されたアルミニウムの色付けも容易になります。陽極酸化層は多孔質であるため、染料が金属に浸透して結合します。カラーは強靭な酸化層に埋め込まれているため、欠けたり剥がれたりしにくく、仕上がりが長持ちします。
アルミニウムは地球上で最もリサイクル可能な材料の 1 つであり、世界のリサイクル率は 75% を超えています。この高いリサイクル性は、使用済みのアルミニウム部品を品質を大幅に損なうことなく溶解して再利用できることを意味し、廃棄物を削減し、天然資源を節約します。 CNC 加工では、プロセスのサブトラクティブな性質により大量の切りくずや廃材が発生するため、アルミニウムのリサイクル可能性は特に有利です。
前述したように、アルミニウムにはさまざまな合金の種類があります。アルミニウム合金は一般に、銅、マグネシウム、シリコン、亜鉛など、含まれる主な合金元素に基づいてさまざまなグレード (シリーズ) に分類されます。このセクションでは、主な合金元素に基づいた一般的なアルミニウム合金について説明します。
| シリーズ | 主な合金元素 | 主な特徴 | 代表的な用途 |
| 1000 | 99%アルミニウム | 導電性に優れ、耐食性が強く、加工性に優れ、強度は比較的低い | 導電体、化学機器、反射板 |
| 2000年 | 銅 | 高強度と優れた耐疲労性、限定的な耐食性 | 航空宇宙部品、高負荷のスポーツ用品、軍事機器 |
| 3000 | マンガン | 加工性良好、適度な強度、耐食性良好 | 飲料缶、屋根材、調理器具 |
| 4000 | シリコン | 融点が低く、流動特性が良好 | 溶接溶加材、鋳造部品 |
| 5000 | マグネシウム | 優れた耐食性、中強度から高強度、良好な溶接性 | 造船、燃料タンク、海洋構造物 |
| 6000 | マグネシウムとシリコン | 中強度、良好な耐食性、良好な成形性、溶接性 | 構造部品および航空宇宙部品、自動車部品 |
| 7000 | 亜鉛(場合によってはマグネシウム、クロム、銅) | 強度は非常に高いが、耐食性は2000シリーズより劣る | 航空宇宙部品、軍用車両、兵器、高性能部品 |
| 8000 | 各種(リチウム、鉄など) | 元素によるさまざまな特性、特殊な用途 | アルミ箔、医薬品包装材、電池箔 |
アルミニウムのグレードの選択は、アプリケーションの特定の要件によって異なります。
ここではアルミニウム合金の最も一般的な加工方法を紹介します。

CNC フライス加工は、アルミニウム部品を加工するための最も一般的で汎用性の高い方法の 1 つです。回転切削工具を使用してアルミニウムのワークピースから材料を成形します。コンピューター数値制御 (CNC) システム、自動工具交換装置、および工具カルーセルの導入により、これらの機械は複雑な形状、穴、表面輪郭をより高い精度と効率で作成できるようになりました。 CNC フライス盤は、 を備えた 2 ~ 12 軸の構成で利用できます。 3 ~ 5 軸が最も一般的に使用されます。

CNC 旋削は主に、シャフト、ブッシュ、ネジなどのアルミニウム製の円筒形または円錐形の部品を製造するために使用されます。このプロセスでは、アルミニウムのワークピースが回転し、固定された切削工具が材料を除去して目的の形状を実現します。この方法により、比較的短時間で高精度かつ優れた表面仕上げが可能となり、特に大量生産に適しています。 CNC 旋盤で実行される一般的な作業には、円筒旋削、テーパー加工、フェーシング、ねじ切りなどの旋削関連タスクが含まれます。最新の CNC 旋盤は、穴あけ、溝加工、タップ加工などの二次的な操作も実行できるため、より高い汎用性が得られます。

CNC レーザー マシンは、集束レーザー ビームを使用してアルミニウムを燃焼または蒸発させ、きれいでバリのないエッジを高精度で作成します。特に航空宇宙、エレクトロニクス、装飾パネルなどの用途で、複雑なデザイン、鋭い角、厳しい公差を作成するのに適しています。 CNC レーザー切断により、優れた精度とエッジ品質が実現します。ただし、熱による歪みや切断速度の低下により、厚いアルミニウムシートの切断にはあまり効果的ではありません。この制限にもかかわらず、レーザー切断は、薄肉から中厚さのアルミニウム コンポーネントを含むプロジェクトで依然として人気のある選択肢です。

CNC プラズマ切断では、圧縮空気を極度の高温に加熱することで生成される高速プラズマ アークを使用して、厚さ 6 インチまでのアルミニウムを溶解します。コンピューター制御のトーチヘッドが正確な切断パスをたどると同時に、圧縮空気が溶けた材料を吹き飛ばしてきれいな切断を実現します。この方法は高速でコスト効率が高く、操作が比較的簡単です。 CNC プラズマ切断はレーザー切断よりも精度が低く、粗いエッジを滑らかにするために追加の仕上げが必要になる場合がありますが、建設、造船、重工業などの業界では依然として人気のある選択肢です。

レーザーやプラズマ切断とは異なり、ウォータージェット切断は熱を発生しません。これは、研磨材と混合した高圧の水流を使用してアルミニウムを切断する冷間切断プロセスです。この方法では、アルミニウムの焼け、歪み、構造の変化を回避し、アルミニウムの特性を維持します。ウォータージェット切断は、あらゆる厚さのアルミニウムを優れた精度と滑らかなエッジで処理できます。プラズマ切断よりも遅いですが、複雑な設計に最適であり、航空宇宙、自動車、カスタム製造で一般的に使用されており、後処理は最小限で済みます。
アルミニウムはその加工性と多用途性で高く評価されていますが、CNC 加工中に特定の課題が発生する可能性があります。以下は、遭遇する最も一般的な課題の一部です。
アルミニウムは、特に 1000 や 3000 シリーズのような柔らかい材種の場合、加工中に長く連続した切りくずを生成する傾向があります。これらの長い切りくずは絡み合う可能性があり、切削工具に詰まり、加工プロセスを中断し、効率の低下や欠陥を引き起こす可能性があります。これを管理するには、冷却液、送風機、またはチップ管理システムを採用する必要があります。
アルミニウムの展性と柔らかさにより、材料が切削工具のエッジに付着することがあります。これはビルトアップエッジ (BUE) として知られる現象です。この堆積は工具寿命を短縮し、表面仕上げに影響を与え、寸法の不正確さにつながります。窒化チタン (TiN) などの適切なコーティングが施された鋭利な工具を使用し、適切な潤滑剤を塗布することで、この問題を最小限に抑えることができます。
アルミニウム合金は熱伝導率が高く、熱を効率的に放散しますが、切断速度が速く、切断負荷が大きいため、熱が材料全体に素早く分散されないことがあります。このような場合、クーラントを使用し、切削速度と送り速度を最適化すると、熱膨張による悪影響を軽減できます。
機械加工中、アルミニウムの軽量な性質により、特に変形しやすい薄肉または長い部品の場合、位置決めが不安定になることがあります。したがって、CNC 加工では、精度を確保し、部品の歪みを防ぐために、適切な治具設計と安定したワーク保持方法が重要です。
カスタム CNC アルミニウム パーツをお探しですか?軽量、強度、信頼性、費用対効果の高いアルミニウムは、製造において最も汎用性の高い材料の 1 つとなっています。 Chiggo では、取り扱う材料の約 70% を占めるアルミニウムの加工に 10 年以上の経験があります。 今すぐお問い合わせください始めましょう!
ポリアミドは、アミド結合を含むすべてのポリマーの一般的な用語です。ナイロンはもともと、産業用および消費者用途向けに開発された合成ポリアミドPA6およびPA66のデュポンの商標でした。ナイロンはポリアミドのサブセットですが、2つの用語は完全に交換可能ではありません。この記事では、ポリアミドとナイロンの関係を調査し、それらの重要な特性とパフォーマンスの詳細な比較を提供します。 ポリアミドとは何ですか? ポリアミド(PA)は、繰り返し単位がアミド(-CO-NH-)結合によってリンクされている高分子量ポリマーのクラスです。ポリアミドは自然または合成のいずれかです。天然のポリアミドには、羊毛、絹、コラーゲン、ケラチンが含まれます。合成ポリアミドは、3つのカテゴリに分類できます。 脂肪族ポリアミド(PA6、PA66、PA11、PA12):一般工学にぴったりです。それらは、強度、靭性、耐摩耗性、および簡単な処理のバランスを妥当なコストでバランスさせます。 芳香族ポリアミド(Kevlar®やNomex®などのアラミド):極端なパフォーマンスに最適です。 Kevlar®のようなパラアミッドは、例外的な引張強度と耐抵抗を提供しますが、Nomex®のようなメタアラミッドは、固有の火炎耐性と熱安定性に充てられています。それらは高価であり、溶融処理できないため、一部の形状と製造ルートはより制限されています。 半芳香族ポリアミド(PPA、PA6T、PA6/12T):高温エンジニアリングを対象としています。それらは、高温の剛性と寸法を維持し、多くの自動車液をうまく処理します。それらは溶融処理(注入/押し出し)を処理することができますが、より高い溶融温度で動作し、慎重に乾燥する必要があります。脂肪族PAとアラミッドの間にはコストがかかります。 それらは、分子鎖間の水素結合による結晶性、良好な熱耐性と耐薬品性、および水分吸収の傾向を高めていますが、これらの特性の程度はタイプによって大きく異なります。それらの機械的特性(引張強度、弾性弾性率、破壊時の伸び)は、鎖の剛性と結晶性に密接に結び付けられています。これらは高いほど、材料が硬くて強くなりますが、より脆弱です。値が低いと、より柔らかく、より丈夫な素材が生じます。 ポリアミドの一般的なグレード 以下は、最も一般的な合成ポリアミドグレード、それらの重要な特性、および典型的なアプリケーションの概要です。 学年一般名モノマー炭素数重合引張強度(MPA)弾性率(GPA)融解温度(°C)HDT(°C、乾燥、1.8 MPa)水分吸収(%) @50%RH耐薬品性PA6ナイロン6(合成)Caprolactam(ε-Caprolactam)6リングオープン重合60–751.6–2.5220–22565–752.4–3.2(〜9–11%飽和) 優れたオイル/燃料抵抗;強酸/塩基に敏感PA66ナイロン6,6ヘキサメチレンジアミン +アディピン酸6+6凝縮重合70–852.5–3.0255–26575–852.5–3.5(〜8–9%飽和) PA6と同様に、わずかに優れた溶媒耐性PA11バイオベースのポリアミド11-アミナウンドカノ酸11自己凝縮50–65 1.2–1.8185–19055–651.5–2.0優れた耐薬品性、塩スプレー、耐性耐性PA12長鎖ポリアミドラウリル・ラクタム12リングオープン重合45–551.6–1.8178–18050–600.5–1.0PA11に似ています。優れた耐薬品性PA46高テンプポリアミドテトラメチレンジアミン +アディピン酸4+6凝縮重合80–1003.0–3.5〜295160–1702.0–3.0(飽和すると高く) 優れた高テンプル、オイル、耐摩耗性ケブラーパラアミッドP-フェニレンジアミン +テレフタロイル塩化物 - 凝縮重合3000-360070–130融解なし; 500°Cを超える分解 最大300°Cまでのプロパティを保持します。 500°Cを超える分解 3–7(水分回復 @65%RH) ほとんどの化学物質に耐性があります。 UV敏感 ポリアミドを識別する方法 簡単なハンズオンテストでポリアミドをすばやくスクリーニングします - 火傷テストで始まります(溶けてから黄色で傾けた青色の炎で燃やし、セロリのような臭いを放ち、硬い黒いビーズを残します)またはホットニードルテスト(同じ匂いできれいに柔らかくなります)。 PA6/PA66(密度≈1.13–1.15 g/cm³)は水に沈み、PA11/PA12(≈1.01–1.03 g/cm³)のような長鎖グレードは水または希釈アルコールに浮かぶ可能性があることに注意してください。決定的なラボIDの場合、FTIR分光法を使用して、特徴的なN – Hストレッチ(〜3300cm⁻¹)およびC = Oストレッチ(〜1630cm⁻¹)を検出し、DSCを使用して融点(PA12≈178°C、PA6≈215°C、PA66≈260°C)を確認します。 ナイロンとは何ですか? ナイロンは合成ポリアミドの最も有名なサブセットです。実際には、人々がプラスチックやテキスタイルで「ポリアミド」と言うとき、彼らはほとんど常にナイロン型材料を指しています。 最も広く使用されているコマーシャルナイロン - ナイロン6、ナイロン6/6、ナイロン11、およびナイロン12などは、脂肪族ポリアミドです。それらの半結晶性微細構造と強力な水素結合により、一般工学の強度、靭性、耐摩耗性、良好な熱と耐薬品性の優れた組み合わせが得られます。多目的で信頼できる、それらは広範囲の従来の製造および添加剤技術を通じて処理することができ、それらをの家族の長年の主食にすることができますエンジニアリングプラスチック。 ナイロンを識別する方法 全体として、ナイロンとポリアミドを識別するために使用される方法は、フィールドとラボでの両方で、本質的に同じです。主な違いは、ナイロングレードが正確な区別のためにより正確な基準を必要とすることです。実験室の設定では、融点を測定し、特定のグレードを特定するために、微分スキャン熱量測定(DSC)が一般的に使用されます。密度テストは、ショートチェーンナイロン(PA6/PA66)から長鎖ナイロン(PA11/PA12)を分離するための簡単な方法を提供します。さらなる確認が必要な場合、X線回折(XRD)や溶融流量(MFR)分析などの手法を適用して、6シリーズと11/12シリーズの材料をより正確に区別できます。 ポリアミドとナイロンの一般的な特性 「ポリアミド」と「ナイロン」は、しばしば同じ意味で使用されますが、ナイロンはポリアミドの1つのタイプにすぎません。このセクションでは、それらの共通のプロパティについて詳しく説明します。 構成と構造 ポリアミドは、バックボーンでアミド(-CO-NH-)結合を繰り返すことで特徴付けられますが、多くのモノマーから合成できます。脂肪族ポリアミドは、ε-カプロラクタム、ヘキサメチレンジアミンを加えたヘキサメチレンジアミン、または11-アミナウンドカノ酸などの直線鎖ユニットから構築されていますが、芳香族アラミッドは硬いベンゼンリングを連鎖に取り入れています。モノマーと重合法の選択により、鎖の柔軟性、結晶化度、水素結合密度が決定されます。これは、機械的強度、熱安定性、油、燃料、および多くの化学物質に対する耐性に影響を与える要因です。 ナイロンは、狭いモノマーセットから作られた脂肪族ポリアミドのサブセットです。一般的なナイロングレードには、ヘキサメチレンジアミンにアディピン酸を凝縮することにより生成されるPA6とPA6,6が含まれます。それらの均一なチェーンセグメントと強力な水素結合は、引張強度、靭性、耐摩耗性、および中程度の耐熱性のバランスの取れた混合をもたらす半結晶ネットワークを作成します。 融点 ポリアミド(ナイロンを含む)の融点は、モノマーの化学構造、結晶性の程度、水素結合密度、鎖の柔軟性の4つの主な要因によって決定されます。一般に、より多くの定期的に間隔を置いた水素結合とより高い結晶性が融解温度を上昇させます。逆に、結晶の形成を破壊する柔軟なチェーンセグメントが融点を低下させます。たとえば、PA11やPA12などの長鎖、低結晶性ポリアミドは178〜180°C前後に溶け、PA6やPA6/6のような一般的なナイロンは、約215°Cと265°Cの間で溶融し、ケブラーなどの硬質アロマティックポリアミドは500°Cを超えて溶けません。 引張強度と靭性 一般に、ナイロンは強度と靭性のバランスの取れた組み合わせを提供し、他のポリアミドはより広範なパフォーマンスチューニングを提供します。高強度の端で、Kevlar®などの芳香族アラミッドは、最大3.6 GPa(〜3600 MPa)までの繊維引張強度を達成し、弾道衝撃下でのエネルギー吸収に優れています。反対側では、PA11やPA12のような長鎖脂肪族ポリアミドは、優れた延性と高い衝撃耐性のために引張強度(〜45〜60 MPa)を交換します。一般的なナイロン(PA6およびPA6,6)は真ん中に真っ直ぐに横たわっており、約60〜85 MPaの乾燥した引張強度とバランスの取れた耐衝撃性を提供し、耐荷重く衝撃耐性成形部品に人気のある選択肢となっています。 耐摩耗性 ポリアミドファミリー全体は、良好な耐摩耗性を提供します。 […]
材料の硬度は、材料が大きな変形を受けることなく機械的力にどれだけ耐えられるかを示す重要な特性です。これは製造およびエンジニアリングにおける重要な特性であり、製品の性能と寿命に影響を与えるだけでなく、生産プロセスの効率と最終製品の品質にも直接影響します。
CNC 加工は、コンピュータ制御のツールを使用してさまざまな材料から精密部品を作成する多用途の製造プロセスです。これらの材料はCNC加工の基礎を構成し、加工結果に直接影響を与えます。したがって、多様な CNC 加工材料を認識し、特定の用途に適切な材料を見極める能力を身に付けることが重要です。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español