スマートフォンから自動車に至るまで、私たちが日常的に使用するほぼすべての製品は、その起源を製造プロセスにまで遡ることができます。これらのプロセスは、製品の品質と生産効率を決定するだけでなく、企業のコスト管理や市場競争力にも直接影響します。この記事では、製造プロセスを定義し、そのカテゴリとさまざまな方法を詳しく掘り下げます。今すぐその広範な影響を探ってみましょう!
製造プロセスがどのようなものかを説明する前に、製造の全体像を少し見てみましょう。製造とは、工具、機械、労働力を使用して、原材料またはコンポーネントを完成品に変換するプロセスです。
製造業の歴史は、人類が初めて材料を切断、粉砕、成形するために単純な道具を使用した先史時代に始まります。時間が経つにつれ、文明が進歩するにつれて、製造技術も複雑かつ洗練されました。産業革命は重要な転換点となり、蒸気動力、機械化、大量生産方法が導入され、商品の製造方法に革命をもたらしました。現在、製造プロセスは高度に自動化され、ロボット工学、コンピューター数値制御 (CNC) 加工、3D などの先進技術と統合されています。印刷。
製造プロセスとは、特定の製品を生産するためのより広範な製造活動における特定の方法および一連の操作を指します。これには、設計、材料の選択、加工、品質管理、最終組み立てなどの複数の段階が含まれます。各段階は、最終製品の全体的なパフォーマンスとライフサイクルを形成する上で極めて重要です。
製造方法と最終製品の種類に応じて、製造プロセスはいくつかの種類に分類でき、それぞれに独自の特徴と用途があります。一般に、製造プロセスには 5 つのカテゴリがあります。
ジョブショップ製造は、少量多品種の要件に合わせて設計された柔軟性の高い生産パラダイムです。多くの場合、特殊なツールとセットアップ時間が必要となる、ユニークなカスタマイズされた製品を専門としています。顧客の注文に応じて、ジョブ ショップはさまざまな生産需要に迅速に対応できます。ただし、生産には複数の複雑で非線形な操作が含まれるため、この柔軟性はワークフロー パターンの予測に課題をもたらします。このような複雑さにもかかわらず、ジョブショップ製造は、重機、機械、または特殊な商品を少量のバッチまたはプロトタイプで生産する業界にとって理想的です。
ディスクリート製造には、さまざまな個別の部品やコンポーネントから組み立てられる、個別の数えられる製品の生産が含まれます。このタイプの製造では、これらの個々の部品を組み立てて完成品を作ることに重点が置かれています。車、コンピューター、家電製品などの各製品は固有であり、生産プロセス全体を通じて追跡できます。ディスクリート製造にはさまざまな作業が含まれ、多くの場合、高度なカスタマイズに対応します。自動車、エレクトロニクス、家具などの業界でよく使用されています。
反復製造は、同じ製品または非常に類似した製品を長期間にわたって繰り返し生産することを特徴とします。このアプローチは、標準化された製品を急速に大量かつ同一に生産することに重点を置いています。専用の生産ラインと自動組立機械によりプロセスが合理化され、手作業の必要性が軽減されます。品質管理は一貫性を確保し、欠陥を最小限に抑えるために最も重要であり、材料は一連の自動化されたステップを継続的に通過します。この方法は、自動車部品、回路基板、プロセッサーの製造だけでなく、ボトル入り飲料や缶詰食品などの均一な食品や飲料品の大規模生産にも非常に効率的です。
バッチプロセス製造は、製品を連続的にではなくグループまたはバッチで生産する生産方法です。ディスクリート製造やジョブショップ製造と同様に、バッチプロセス製造では、顧客の注文や市場の需要に基づいて生産スケジュールを調整します。各バッチは次のバッチを開始する前に生産プロセス全体を通過するため、バッチ間の高度なカスタマイズと柔軟性が可能になります。たとえば、製薬業界では、特定の処方と用量でさまざまなバッチの医薬品が製造されます。各バッチの後、機器は洗浄され、次のバッチに備えられます。次のバッチには、異なる薬剤や前のバッチのバリエーションが使用される場合があります。
反復製造と同様に、このタイプのプロセス製造も生産効率と標準化を強化します。連続製造では、原材料が生産システムに連続的に流れ込み、完成品がもう一方の端から排出されます。この絶え間ない生産は通常、化学薬品、石油製品、食品や飲料などの液体、気体、またはその他の流動性物質に使用されます。対照的に、繰返生産は、生産サイクルまたはバッチ間に一時停止がある可能性がある、高度に標準化された製品の生産に適しています。
各カテゴリ内では、望ましい結果を達成するためにさまざまな方法やテクニックが使用されます。次の文章では、7 つの主要なタイプの製造方法とそのサブタイプについて説明します。
サブトラクティブ製造は、固体ブロックから材料を除去して目的の形状を作成する多用途のプロセスです。金属、プラスチック、セラミック、複合材料など、幅広い材料に適応します。最新のサブトラクティブ製造プロセスは CNC テクノロジーによって自動化されており、複雑な細部や滑らかな表面を高速で正確に加工することができます。ジョブショップ製造およびディスクリート製造企業は、カスタム部品やコンポーネントの製造にサブトラクティブ プロセスを広く使用しています。
一般的なサブトラクティブ製造プロセスは次のとおりです。
接合は、2 つ以上の材料を永久的または半永久的に接続してアセンブリを作成するプロセスです。この技術は、直接製造するのが現実的ではない複雑な製品の製造に広く使用されています。複数の単純なコンポーネントを作成し、それらを結合することで、複雑な部品の製造コストを削減できます。さらに、接合プロセスにより、製品全体を廃棄することなく、故障したコンポーネントを交換することができます。結合プロセスの例をいくつか示します。
成形とは、材料を追加したり除去したりすることなく、機械的な力を使用して材料 (通常は金属) の形状を変更する製造プロセスです。このプロセスは材料の塑性変形に基づいており、材料の無駄が最小限に抑えられます。成形中のさまざまな種類の製造プロセスは次のとおりです。
鋳造では、液体金属を型のキャビティに注入して、特定の形状の固体オブジェクトを作成します。金属が冷えて固まると、型が取り外され、鋳造部分が現れます。鋳造にはさまざまな工程があり、次のように分類されます。
他にも、真空ダイカスト、低圧鋳造、ロストフォーム鋳造などの鋳造方法があります。これらは、独自の利点により特定の生産要件を満たすためにさまざまな業界でも採用されています。
成形は鋳造プロセスに似ていますが、鋳造は主に金属を扱うのに対し、成形は一般的にプラスチックに関連付けられます。成形では、溶かした材料を型に流し込み、目的の形状に固めます。金型の作成にはコストと時間がかかりますが、このプロセスは、正確な寸法と良好な表面仕上げを備えた部品の大量生産に最適です。金型の再利用可能な性質により、生産コストも削減されます。一般的な成形方法には次のものがあります。
一般に 3D プリンティングとして知られる積層造形 (AM) は、デジタル モデルに基づいて材料を層ごとに追加してオブジェクトを構築するプロセスです。 AM は、金属や特定のプラスチックなどの熱で成形可能な材料を使用するため、高度なカスタマイズ、複雑な形状、材料の無駄の削減が可能になります。一般的な積層造形プロセスの種類は次のとおりです。
表面処理プロセスには、外観、耐食性、耐摩耗性、密着性などの特性を向上させるために、材料の表面に適用されるさまざまな技術が含まれます。これらの処理は、機械的、化学的、または電気化学的です。一般的な種類の表面処理には、ビード ブラスト、研磨、粉体塗装、電気メッキなどがあります。 陽極酸化。
顧客の需要と生産プロセスに基づいて、製造およびサプライ チェーン管理で一般的に使用される 3 つの製造戦略があります。
Make to Stock (MTS) アプローチでは、メーカーは過去の販売データ、市場動向、予測に基づいて将来の需要を見越して商品を生産します。製品は、特定の顧客の注文を受ける前に製造、組み立てられ、倉庫に保管されます。
この方法では、製品がすでに入手可能で出荷の準備ができているため、顧客の注文を迅速に履行することができます。すぐに利用できるようになることでリードタイムが最小限に抑えられ、顧客満足度が向上します。ただし、需要予測が不正確な場合には、過剰在庫が発生するリスクも伴います。
受注生産 (MTO) 戦略では、顧客が注文した後にのみ生産プロセスを開始します。メーカーは、さまざまな注文に対応できる柔軟な生産システムを維持しており、多くの場合、生産期間は短くなります。
MTO では在庫コストと陳腐化のリスクが軽減されますが、注文ごとに生産が最初から開始されるため、通常はリード タイムが長くなります。この方法は、需要量が少ない製品やカスタマイズのレベルが高い製品に最適です。
Make to Assemble (MTA) は Assemble to Order (ATO) とも呼ばれ、MTS と MTO の両方の要素を組み合わせたハイブリッド アプローチです。このモデルでは、メーカーがコンポーネントまたはサブアセンブリを事前に製造して在庫しており、顧客の注文を受けてすぐに最終製品に組み立てることができます。
この戦略により、完全な MTO と比較して短いリードタイムを維持しながら、ある程度のカスタマイズが可能になります。 MTA により、生産プロセス中の大規模なカスタマイズの必要性が軽減され、効率とコスト効率が向上します。また、必要なコンポーネントのみが確実に製造されるため、無駄や過剰在庫が最小限に抑えられます。 MTA は、標準機能とカスタマイズ可能な機能が混在する製品に特に適しています。
製造プロセスの種類に関しては、特定の業界、製品、生産目標に合わせてカスタマイズされた多様な方法論が存在することは明らかです。製造方法に関する議論では、製品の効率、費用対効果、品質を達成するのに役立つ重要な側面に焦点を当てました。 Chiggo では、CNC 加工 と 板金製造。さらに、3D プリンティングおよび射出成形サービスも提供し、お客様のニーズに合わせた包括的なソリューションを提供します。ご質問がございましたら、お問い合わせください。
CNC(コンピューター数値制御)加工は、セラミック、木材、複合材などの多様な材料から高品質の部品を生産するための高精度で効率的なプロセスです。プラスチック部品が必要で、CNCを機械加工することを決定した場合、最初のステップは、適切なタイプのプラスチックを選択することです。しかし、非常に多くの機械加工可能なオプションが利用可能で、適切なオプションをどのように選択しますか?読み続けてください - この記事はあなたを答えに導きます。
ポリアミドは、アミド結合を含むすべてのポリマーの一般的な用語です。ナイロンはもともと、産業用および消費者用途向けに開発された合成ポリアミドPA6およびPA66のデュポンの商標でした。ナイロンはポリアミドのサブセットですが、2つの用語は完全に交換可能ではありません。この記事では、ポリアミドとナイロンの関係を調査し、それらの重要な特性とパフォーマンスの詳細な比較を提供します。 ポリアミドとは何ですか? ポリアミド(PA)は、繰り返し単位がアミド(-CO-NH-)結合によってリンクされている高分子量ポリマーのクラスです。ポリアミドは自然または合成のいずれかです。天然のポリアミドには、羊毛、絹、コラーゲン、ケラチンが含まれます。合成ポリアミドは、3つのカテゴリに分類できます。 脂肪族ポリアミド(PA6、PA66、PA11、PA12):一般工学にぴったりです。それらは、強度、靭性、耐摩耗性、および簡単な処理のバランスを妥当なコストでバランスさせます。 芳香族ポリアミド(Kevlar®やNomex®などのアラミド):極端なパフォーマンスに最適です。 Kevlar®のようなパラアミッドは、例外的な引張強度と耐抵抗を提供しますが、Nomex®のようなメタアラミッドは、固有の火炎耐性と熱安定性に充てられています。それらは高価であり、溶融処理できないため、一部の形状と製造ルートはより制限されています。 半芳香族ポリアミド(PPA、PA6T、PA6/12T):高温エンジニアリングを対象としています。それらは、高温の剛性と寸法を維持し、多くの自動車液をうまく処理します。それらは溶融処理(注入/押し出し)を処理することができますが、より高い溶融温度で動作し、慎重に乾燥する必要があります。脂肪族PAとアラミッドの間にはコストがかかります。 それらは、分子鎖間の水素結合による結晶性、良好な熱耐性と耐薬品性、および水分吸収の傾向を高めていますが、これらの特性の程度はタイプによって大きく異なります。それらの機械的特性(引張強度、弾性弾性率、破壊時の伸び)は、鎖の剛性と結晶性に密接に結び付けられています。これらは高いほど、材料が硬くて強くなりますが、より脆弱です。値が低いと、より柔らかく、より丈夫な素材が生じます。 ポリアミドの一般的なグレード 以下は、最も一般的な合成ポリアミドグレード、それらの重要な特性、および典型的なアプリケーションの概要です。 学年一般名モノマー炭素数重合引張強度(MPA)弾性率(GPA)融解温度(°C)HDT(°C、乾燥、1.8 MPa)水分吸収(%) @50%RH耐薬品性PA6ナイロン6(合成)Caprolactam(ε-Caprolactam)6リングオープン重合60–751.6–2.5220–22565–752.4–3.2(〜9–11%飽和) 優れたオイル/燃料抵抗;強酸/塩基に敏感PA66ナイロン6,6ヘキサメチレンジアミン +アディピン酸6+6凝縮重合70–852.5–3.0255–26575–852.5–3.5(〜8–9%飽和) PA6と同様に、わずかに優れた溶媒耐性PA11バイオベースのポリアミド11-アミナウンドカノ酸11自己凝縮50–65 1.2–1.8185–19055–651.5–2.0優れた耐薬品性、塩スプレー、耐性耐性PA12長鎖ポリアミドラウリル・ラクタム12リングオープン重合45–551.6–1.8178–18050–600.5–1.0PA11に似ています。優れた耐薬品性PA46高テンプポリアミドテトラメチレンジアミン +アディピン酸4+6凝縮重合80–1003.0–3.5〜295160–1702.0–3.0(飽和すると高く) 優れた高テンプル、オイル、耐摩耗性ケブラーパラアミッドP-フェニレンジアミン +テレフタロイル塩化物 - 凝縮重合3000-360070–130融解なし; 500°Cを超える分解 最大300°Cまでのプロパティを保持します。 500°Cを超える分解 3–7(水分回復 @65%RH) ほとんどの化学物質に耐性があります。 UV敏感 ポリアミドを識別する方法 簡単なハンズオンテストでポリアミドをすばやくスクリーニングします - 火傷テストで始まります(溶けてから黄色で傾けた青色の炎で燃やし、セロリのような臭いを放ち、硬い黒いビーズを残します)またはホットニードルテスト(同じ匂いできれいに柔らかくなります)。 PA6/PA66(密度≈1.13–1.15 g/cm³)は水に沈み、PA11/PA12(≈1.01–1.03 g/cm³)のような長鎖グレードは水または希釈アルコールに浮かぶ可能性があることに注意してください。決定的なラボIDの場合、FTIR分光法を使用して、特徴的なN – Hストレッチ(〜3300cm⁻¹)およびC = Oストレッチ(〜1630cm⁻¹)を検出し、DSCを使用して融点(PA12≈178°C、PA6≈215°C、PA66≈260°C)を確認します。 ナイロンとは何ですか? ナイロンは合成ポリアミドの最も有名なサブセットです。実際には、人々がプラスチックやテキスタイルで「ポリアミド」と言うとき、彼らはほとんど常にナイロン型材料を指しています。 最も広く使用されているコマーシャルナイロン - ナイロン6、ナイロン6/6、ナイロン11、およびナイロン12などは、脂肪族ポリアミドです。それらの半結晶性微細構造と強力な水素結合により、一般工学の強度、靭性、耐摩耗性、良好な熱と耐薬品性の優れた組み合わせが得られます。多目的で信頼できる、それらは広範囲の従来の製造および添加剤技術を通じて処理することができ、それらをの家族の長年の主食にすることができますエンジニアリングプラスチック。 ナイロンを識別する方法 全体として、ナイロンとポリアミドを識別するために使用される方法は、フィールドとラボでの両方で、本質的に同じです。主な違いは、ナイロングレードが正確な区別のためにより正確な基準を必要とすることです。実験室の設定では、融点を測定し、特定のグレードを特定するために、微分スキャン熱量測定(DSC)が一般的に使用されます。密度テストは、ショートチェーンナイロン(PA6/PA66)から長鎖ナイロン(PA11/PA12)を分離するための簡単な方法を提供します。さらなる確認が必要な場合、X線回折(XRD)や溶融流量(MFR)分析などの手法を適用して、6シリーズと11/12シリーズの材料をより正確に区別できます。 ポリアミドとナイロンの一般的な特性 「ポリアミド」と「ナイロン」は、しばしば同じ意味で使用されますが、ナイロンはポリアミドの1つのタイプにすぎません。このセクションでは、それらの共通のプロパティについて詳しく説明します。 構成と構造 ポリアミドは、バックボーンでアミド(-CO-NH-)結合を繰り返すことで特徴付けられますが、多くのモノマーから合成できます。脂肪族ポリアミドは、ε-カプロラクタム、ヘキサメチレンジアミンを加えたヘキサメチレンジアミン、または11-アミナウンドカノ酸などの直線鎖ユニットから構築されていますが、芳香族アラミッドは硬いベンゼンリングを連鎖に取り入れています。モノマーと重合法の選択により、鎖の柔軟性、結晶化度、水素結合密度が決定されます。これは、機械的強度、熱安定性、油、燃料、および多くの化学物質に対する耐性に影響を与える要因です。 ナイロンは、狭いモノマーセットから作られた脂肪族ポリアミドのサブセットです。一般的なナイロングレードには、ヘキサメチレンジアミンにアディピン酸を凝縮することにより生成されるPA6とPA6,6が含まれます。それらの均一なチェーンセグメントと強力な水素結合は、引張強度、靭性、耐摩耗性、および中程度の耐熱性のバランスの取れた混合をもたらす半結晶ネットワークを作成します。 融点 ポリアミド(ナイロンを含む)の融点は、モノマーの化学構造、結晶性の程度、水素結合密度、鎖の柔軟性の4つの主な要因によって決定されます。一般に、より多くの定期的に間隔を置いた水素結合とより高い結晶性が融解温度を上昇させます。逆に、結晶の形成を破壊する柔軟なチェーンセグメントが融点を低下させます。たとえば、PA11やPA12などの長鎖、低結晶性ポリアミドは178〜180°C前後に溶け、PA6やPA6/6のような一般的なナイロンは、約215°Cと265°Cの間で溶融し、ケブラーなどの硬質アロマティックポリアミドは500°Cを超えて溶けません。 引張強度と靭性 一般に、ナイロンは強度と靭性のバランスの取れた組み合わせを提供し、他のポリアミドはより広範なパフォーマンスチューニングを提供します。高強度の端で、Kevlar®などの芳香族アラミッドは、最大3.6 GPa(〜3600 MPa)までの繊維引張強度を達成し、弾道衝撃下でのエネルギー吸収に優れています。反対側では、PA11やPA12のような長鎖脂肪族ポリアミドは、優れた延性と高い衝撃耐性のために引張強度(〜45〜60 MPa)を交換します。一般的なナイロン(PA6およびPA6,6)は真ん中に真っ直ぐに横たわっており、約60〜85 MPaの乾燥した引張強度とバランスの取れた耐衝撃性を提供し、耐荷重く衝撃耐性成形部品に人気のある選択肢となっています。 耐摩耗性 ポリアミドファミリー全体は、良好な耐摩耗性を提供します。 […]
プラスチック製造は、現代の世界を形作り、生のポリマーを使い捨てパッケージから精密航空宇宙コンポーネントに至るまであらゆるものに変換します。ただし、すべてのプラスチックが平等に作成されるわけではありません。コモディティとエンジニアリングプラスチックは、2つの一般的なタイプの熱可塑性科学物質であり、溶かし、再形成され、繰り返し固化することができます。コモディティプラスチックは、費用対効果の高い大量の日常品の生産用に設計されていますが、エンジニアリングプラスチックは、要求の厳しいアプリケーションに優れたパフォーマンスを提供します。この記事では、それぞれのユニークな特性、メインタイプ、およびアプリケーションについて説明します。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español