スナップ フィット ジョイントは、インターロック機能を使用して 2 つ以上のコンポーネントを接続する締結機構です。これらは部品を組み立てる最も効率的かつ簡単な方法の 1 つであり、ペットボトルのキャップ、電池カバー、スマートフォンのケース、ペンのキャップ、食品保存用の蓋、および多くのプラスチック製のおもちゃの部品など、私たちの周りの日用品によく使われています。
この記事では、スナップ フィット ジョイントについて詳しく説明し、そのさまざまなタイプ、それぞれの利点と制限について説明し、一般的な問題を回避するための設計のヒントを提供します。

「スナップ フィット ジョイント」の概念をより深く理解するために、この用語を詳しく見てみましょう。 「スナップフィット」とは、ある部品のフック、ビード、突起などの柔軟な機構が嵌合部品の受け機構(溝や穴など)と連動してしっかりとした固定を実現する、一種の機械的締結技術を指します。繋がり。接続は柔軟な機能の弾性変形によって形成され、嵌合部分と適切に位置合わせされると所定の位置に戻ります。
スナップ フィット ジョイントは、このスナップ フィット技術を実際に応用したもので、ネジや接着剤などの追加の留め具を必要とせずに部品を結合するように設計されています。スナップフィットコンポーネントに使用される材料には柔軟性が重要な特性であるため、プラスチックはその弾性によってスナッププロセス中の繰り返しの変形に損傷なく耐えることができるため、第一の選択肢となります。
これらのジョイントは、アンダーカットの種類と組み立て方法に応じて、恒久的なものにすることも、取り外し可能にすることもできます。材料の使用量を削減し、特殊なツールや機器の必要性を排除することで、時間とコストを節約できるという大きな利点があります。簡単なプレスまたは押し込みで部品を接続できるスナップ フィット ジョイントは、自動組立ラインに特に適しています。
射出成形は従来、スナップ フィット ジョイントを大量に製造する効果的な方法でしたが、3D プリンティングは迅速な設計テストと機能検証の新たな可能性を切り開き、スナップ フィット ジョイントの開発プロセスを強化しました。
スナップ フィット ジョイントにはさまざまな設計があり、それぞれ形状、スナップの方向、必要な機械的特性に基づいて特定の用途に適しています。最も一般的なタイプは次のとおりです。


片持ちスナップフィットジョイントは、スナップフィットタイプの中で最も広く使用されており、一端が固定され、もう一端が自由に動く片持ち梁構造を特徴とします。ビームは直線、L 字形、またはその他の特定の形状にすることができ、多くの場合、自由端に突起があり、嵌合部分の対応する溝または穴と噛み合います。
係合中、ビームは対応する部品に合わせて曲がり、その後元の位置に戻り、確実にロックされます。この弾性変形により、迅速な組み立てが可能になり、場合によっては逆変形による分解も可能になります。
利点: このタイプのジョイントは、一般に設計が簡単で、特に射出成形を使用した場合、製造が簡単です。柔軟性が高いため、組み立て時の幅広い変形にも損傷を与えることなく対応できます。これにより、永久接続と取り外し可能な接続の両方に適しています。
制限事項:ビームの基部で応力集中が発生することが多く、特に高荷重や頻繁な使用下では材料疲労が発生する可能性があります。
用途: これらのジョイントは、家庭用電化製品のプラスチック エンクロージャ、電子機器のバッテリー カバー、包装用のスナップオン キャップと蓋、ダッシュボード パネルなどの自動車内装部品、玩具アセンブリ、シンプルで安全な、多くの場合一時的な接続が必要な軽量コンポーネント。

U 字型とL 字型のスナップ ジョイントは、カンチレバー スナップ フィットの特殊な形式です。基本的な利点と欠点は同じですが、特定の状況では追加の利点があります。たとえば、 U 字型スナップ ジョイントにより、コンパクトなスペース内でビームの長さを長くすることができるため、組み立てにかかる力が軽減され、応力集中が最小限に抑えられます。材料の柔軟性が懸念される狭い設計スペースに最適です。一方、L 字型スナップ ジョイントは、方向性のロックと特定の方向での剛性の強化を提供するため、部品を側面から組み立てたり、特定の方向の力に抵抗する必要がある用途に適しています。
これらの設計により、複雑なアンダーカットなしでスナップ フィット ジョイントを作成できるため、射出成形中にスライダーなどの追加の金型コンポーネントの必要性が減ります。これにより、製造プロセスが簡素化され、コスト効率が向上します。


カンチレバー スナップ フィット ジョイントとは異なり、トーション スナップ フィット ジョイントは、直線的な曲げではなく、バーまたはシャフトのねじれ (ねじり変形) に依存してたわみを実現します。ねじりスナップフィットでは、組み立て力が加わると、ねじりアームまたはレバーがピボット点を中心に回転します。この回転により、ロック機能が嵌合部分と係合できるようになります。係合後、ねじりアームは材料の弾性ねじりによって元の位置に戻り、ジョイントを固定します。この機構により、迅速な組み立てが可能になり、逆回転できるように設計されている場合は、簡単に分解することもできます。
利点:直線的な曲げではなくねじりに依存するため、ねじりスナップ フィットは直線的なスペースが限られた設計に組み込むことができ、コンパクトな組み立てソリューションを提供します。さらに、ねじり動作により応力がより均等に分散され、カンチレバー設計の線形たわみと比較して材料疲労の可能性が軽減されます。
制限事項: トーション スナップ フィットは主に回転接続に適しており、ねじり機構を必要とする用途に使用が限定されます。信頼性の高い性能を得るには、ねじり要素が柔軟性と強度の正確なバランスを維持する必要があるため、設計はより複雑になる可能性があります。時間の経過とともに、特に使用頻度が高い場合やストレスの高いシナリオでは、ねじり動作を繰り返すと摩耗が発生する可能性があります。
用途: これらのジョイントは、グローブ ボックスやアクセス パネルなどのヒンジ付きカバーやドア、またスーツケース ロックなどのラッチ機構に広く使用されています。これらは、折りたたみ式携帯電話などの折り畳み式デバイスや、回転部品を備えたインタラクティブな玩具にも使用されています。


環状スナップフィットジョイントは、嵌合部品の対応する溝にスナップするリング状の突起を備えており、360° の係合を生み出し、円筒形コンポーネントの周囲に強力かつ均一な接続を提供します。
利点: パーツの外周全体で均等にかみ合うことで応力が均一に分散され、片持ちスナップフィットと比較して応力集中が軽減され、接合強度が向上します。この設計は、より優れたシール機能と高い保持力も提供します。
制限事項: カンチレバー スナップ フィットと比較して、環状スナップ フィットは、リング状の突起を均一に変形させる必要があるため、組み立て中の柔軟性が低く、硬い材料の場合は困難な場合があります。一度嵌合すると、特にしっかりとフィットするように設計されている場合、分解するのが困難なことが多く、永久的な接続に適しています。また、嵌合の円形かつ連続的な性質により、より複雑な金型とより厳しい公差が必要となり、製造の複雑さが増大します。
用途: これらは、液体または気密シールが不可欠なボトルの蓋、配管コネクタ、医療機器の蓋に加え、ペンのキャップ、マーカーの蓋、ホースなどの自動車の円筒部品にもよく使用されます。コネクタ、フィルター、液体リザーバーなど、360 度のしっかりとした接続が重要です。

スナップ フィット ジョイントの設計計算は、許容たわみ、ひずみ制限、嵌合力を決定するために重要です。設計段階の早い段階でこれらの計算を行うことで、寸法、材料、形状を調整できるようになり、プロトタイピングや製造前に最適なパフォーマンスを確保できます。 スナップ フィット ジョイントの設計に関する完全な有益な調査を行いたい場合は、 にアクセスしてください。 href="https://fab.cba.mit.edu/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf?_ga=2.31423487.1990010822.1729493760-1981153589.1723462904">こちら。

主要なパラメータと計算式

ここで:M = 最大曲げモーメントc = 外側の繊維と中性繊維の間の距離 I = 断面の慣性モーメント

ここで:E = 材料のヤング率

ここで:l = ビームの長さh = ビームの根元の厚さ

ここで:b = ビームの幅Eₛ = 割線係数ε > = 許容ひずみ
設計上の考慮事項
主要なパラメータと計算式

ここで:y = たわみl = レバー アームの長さ

ここで:ν = ポアソン比 (ほとんどのプラスチックでは約 0.35)εₘₐₓ = 材料の許容ひずみ

ここで:G = せん断弾性率 (割線弾性率から導出)Iₚ = 極慣性モーメント r = トーションバーの半径
設計上の考慮事項
主要なパラメータと計算式

ここで:d = 接合部の直径εₘₐₓ = 材料の最大許容ひずみ

ここで:X = チューブとシャフトの相対的な剛性に基づく幾何学的係数

ここで:μ = 摩擦係数α = リード角
設計上の考慮事項

スナップ フィット設計は、計算後でも完全に洗練されていないことが多く、失敗につながる一般的な問題が発生する可能性があります。以下に、これらの問題の一部と、それらに対処するためのベスト プラクティスを示します。
応力集中: 応力集中は、鋭いコーナーや、片持ち梁の基部など、スナップ フィーチャーが急激に変化する領域でよく発生します。これらの集中した応力は、時間の経過とともに亀裂や材料の破損を引き起こす可能性があります。
クリープの発生: クリープとは、継続的な荷重がかかると長期間にわたって材料が徐々に変形する現象です。これは通常、熱可塑性プラスチックなどの材料で発生し、時間の経過とともに接合部が緩み、完全性が損なわれる可能性があります。
疲労: 周期的または反復的な荷重による材料の段階的な劣化を指し、多くの場合亀裂の形成や成長につながります。繰り返しの係合と解放は、特に耐疲労性のない材料で疲労を誘発する可能性があり、スナップフィットの信頼性が低下し、潜在的に故障につながる可能性があります。
公差の問題: 製造公差が不正確であると、スナップ フィーチャーの位置合わせのずれが生じ、接続不良や組み立ての困難が生じる可能性があります。
適切な許容差を設定する
公差が厳しすぎると、組み立て中に過剰な応力が生じ、部品が損傷する可能性があります。一方、公差が緩すぎると、接続が弱くなったり、信頼性が低くなったりする可能性があります。ぴったりとしたフィット感と組み立てやすさの適切なバランスを達成することが不可欠です。実際には、寿命全体にわたって接合部の完全性を維持するには、材料の収縮、温度変化、経時的な摩耗を考慮することが重要です。
カンチレバーの根元にフィレットを追加する

片持ち梁の基部にフィレットを追加することは、鋭い角で通常発生する応力集中を軽減するための一般的な方法です。丸みを帯びたフィレットは応力をより均等に分散するのに役立ち、スナップ フィット ジョイントの耐久性と耐疲労性が向上します。
下の図は、応力集中に対するルートの厚さの増加の影響を示しています。ルートの最適な半径/高さの比は 0.6 であるように見えますが (この点以降はわずかな縮小のみが発生するため)、この半径を使用すると、ビームと成形品壁の交差点に厚い領域が作成され、ヒケやボイドが発生する可能性があります。これを防ぐには、ルートの厚さを公称肉厚の 50 ~ 70% に制限する必要があります。さらに、テストによれば、半径は 0.38 mm (0.015 インチ) 以上である必要があります。

先細のスナップフィットデザイン

テーパー加工では、片持ち梁の断面の高さまたは幅が長さに沿って徐々に減少します。 図に示すように、一定断面の片持ち梁では応力が均等に分布せず、根元に集中します。ビームにテーパを付けることにより、応力分布がより均一になり、たわみ中にビームをより緩やかに曲げることができます。
クリップ (またはフック) の幅を広げる

スナップフィットクリップまたはフックの幅を増やすと、荷重がより広い領域に分散され、単一点にかかる圧力が軽減され、それによって材料の疲労や破損のリスクが最小限に抑えられます。また、幅広のクリップにより強度と安定性が向上し、ジョイントがより堅牢になります。ただし、強度を犠牲にすることなく柔軟性を維持するには、幅を最適化する必要があります。
ラグの追加を検討してください

スナップフィット設計にラグを追加すると、組み立て中にコンポーネントを所定の位置にガイドし、位置合わせを向上させることができます。追加の接触点を提供することで、ラグは位置ずれのリスクを軽減し、難しい組み立て条件下でも部品が正しく嵌合することを保証します。また、二次的なサポートを提供することで接続の全体的な強度が向上し、ジョイントを維持するためのスナップ機能のみへの依存が軽減されます。

スナップフィットジョイントは、組み立ての容易さ、再利用性、費用対効果の高さから、さまざまな業界で高く評価されています。適切に実行された設計は、製品の強度を高めるだけでなく、ユーザーエクスペリエンスも向上させ、組み立てと分解を容易にしながらコンポーネントがしっかりとフィットすることを保証します。
Chiggo は、高品質のプラスチックおよび金属のスナップフィット ジョイントの信頼できるメーカーであり、20 年近くにわたってさまざまな業界にサービスを提供しています。弊社は、 CNC 加工、射出成形、3D プリントなどのカスタム製造サービスを提供しています。当社の経験豊富なエンジニアが、お客様の製品のパフォーマンス向上とコスト削減をお手伝いします。 今すぐデザイン ファイルを送信 し、次のプロジェクトを始めましょう。
金属スプーンについて考えてください。ハンドルを軽く押すと、少し曲がりますが、手放すとすぐに戻ってきます。ただし、より強く押すと、スプーンが永続的な曲がり角になります。その時点で、あなたはスプーンの降伏強度を通り過ぎました。この記事では、降伏強度の意味、引張強度や弾性限界などの関連するアイデアとどのように比較されるか、そしてそれが現実の世界で重要な理由を探ります。また、降伏強度と一般的な材料の典型的な値に影響を与える要因についても見ていきます。 降伏強度とは 降伏強度は、材料が永続的に変形し始める応力レベルです。簡単に言えば、それは素材が跳ね返り(弾性挙動)を止め、完全に逆転しない方法で曲げまたは伸びを開始するポイントです。降伏強度の下で、力を除去すると、材料は元の形状に戻ります(その長さに戻るスプリングのように)。降伏強度を超えて、材料は永遠に変化します。 これをよりよく理解するために、ストレスと緊張という2つの重要な用語を分解しましょう。ストレスは、断面領域で割った材料、または単に材料内の力の強度に加えられる力です。あなたはそれを圧力と考えることができますが、ストレスは外部のプッシュではなく内部反応を説明します。ひずみとは、長さの変化を元の長さで割ったように計算される材料の変化の形状です。ひずみに対するストレスをプロットすると、aが取得されますストレス - ひずみ曲線これは、負荷が増加するにつれて材料がどのように動作するかを示しています。 ストレス - ひずみ曲線の初期の部分では、材料は弾力的に振る舞います。ストレスとひずみは比例し(フックの法則の下で直線)、荷重が除去されると材料は元の形状に戻ります。この領域の終わりは弾性限界です。降伏強度は、この移行を弾性の挙動からプラスチックの挙動に示し、可逆的な変形と不可逆的な変形の境界を定義します。 軟鋼のような多くの延性金属の場合、この移行は鋭いものではなく徐々にです。降伏強度を一貫して定義するために、エンジニアはしばしば0.2%のオフセット方法を使用します。それらは、曲線の弾性部分に平行なラインを描画しますが、0.2%のひずみによってシフトします。この線と交差する点は、曲線と交差する点が降伏強度としてとられます。これは、明確な降伏点が存在しない場合でも、降伏強度を測定するための実用的で標準化された方法を提供します。 降伏強度と引張強度 定義したように、降伏強度は、材料が永続的に変形し始めるストレスです。しばしば究極の引張強度(UTS)と呼ばれる引張強度は、材料が壊れる前に耐えることができる最大応力です。その点に達すると、材料は追加の負荷を運ぶことができなくなり、すぐに骨折が続きます。 どちらも材料がストレスにどのように反応するかを説明しますが、それらは異なる限界を表しています。降伏強度は永久変形の開始を示しますが、引張強度は限界点を示します。たとえば、スチールロッドを引っ張ると、最初に伸長します。降伏強度を通り過ぎると、永続的な伸びが必要です。張力強度に達するまで続けてください。そうすれば、ロッドは最終的にスナップします。 実用的な設計では、エンジニアは、コンポーネントが持続的な損傷をせずに機能的なままでなければならないため、降伏強度に重点を置いています。引張強度は依然として重要ですが、通常、使用中には決して発生しない故障条件を示します。 引張強度に加えて、降伏強度は、しばしば他の2つの概念と混同されます。 弾性制限:弾性制限は、荷重が除去されると、元の形状に完全に戻っている間に材料が取ることができる最大応力です。この制限以下では、すべての変形は弾力性があり、可逆的です。多くの場合、弾性限界は降伏強度に非常に近いため、2つは同じように扱われます。弾性制限は正確な物理的境界を示しますが、降伏強度は一貫して測定して安全な設計に使用できる標準化されたエンジニアリング値を提供します。 比例制限:この用語は、応力 - 伸縮曲線の線形部分に由来します。比例制限は、フックの法則に従って、ストレスと緊張が直接的な割合で増加するポイントです。通常、弾性制限と降伏強度の両方の前に発生します。この点を超えて、曲線は曲がり始めます。関係はもはや完全に線形ではありませんが、材料はまだ弾力性があります。 降伏強度に影響を与える要因 降伏強度は固定されたままではありません。いくつかの材料と環境要因に応じて変化する可能性があります。ここに最も一般的なものがあります: 材料組成(合金要素) 金属の構成は、その降伏強度に大きな影響を与えます。金属では、合金要素を追加すると、それらを強くすることができます。たとえば、炭素、マンガン、クロムなどの元素が添加されると、鋼は強度を獲得しますが、炭素が多い場合も脆弱になります。アルミニウム合金は、銅、マグネシウム、亜鉛などの元素から強度を得ます。これらの追加により、金属内に脱臼の動きをブロックする小さな障害物(プラスチック変形の原子レベルのキャリア)が生じ、降伏強度が高まります。簡単に言えば、金属の「レシピ」により、曲がりが難しくなり、簡単になります。そのため、ソーダ缶のアルミニウムは柔らかく柔軟であり、航空機の翼のアルミニウムは他の金属と混合しているため、降伏強度がはるかに高くなっています。 粒サイズ(微細構造) 一般に、穀物が小さいことはより高い強度を意味し、ホールとペッチの関係によって記述されている傾向です。その理由は、穀物の境界が転位運動の障壁として機能するため、より細かい粒子はより多くの障害物を生み出し、金属をより強くすることです。冶金学者は、制御された固化または熱機械処理を通じて穀物のサイズを改良します。たとえば、多くの高強度の鋼と超合金は非常に細かい穀物で設計されており、非常に大きな穀物を持つ金属がより簡単に収量する傾向があります。 熱処理 金属の加熱と冷却の方法は、その構造を変えることができ、したがってその降伏強度を変えることができます。アニーリング(遅い加熱と冷却)金属を柔らかくし、降伏強度を低下させ、内部応力を緩和することにより延性を引き出します。消光(水または油の急速な冷却)は、構造を硬くてストレスのある状態にロックし、降伏強度を大幅に増加させますが、金属を脆くします。バランスを回復するために、クエンチングの後に続くことがよくあります気性、タフネスを改善する中程度の再加熱ステップ。 適切な熱処理を選択することにより、メーカーはアプリケーションに応じて金属をより硬く、または柔らかくすることができます。たとえば、スプリングスチールは高降伏強度を達成するために処理されるため、変形せずに曲げることができますが、スチールワイヤーは最初にアニールされ、簡単な形をしてから後で強化します。 製造プロセス(コールドワーク) 材料が機械的にどのように処理されるかは、降伏強度を変えることもできます。コールドワーク(コールドローリングやコールドドローイングなど、室温で金属を変形させる)は、作業硬化と呼ばれるメカニズムを介して降伏強度を高めます。金属を卑劣に変形させると、その結晶構造に転位と絡み合いを導入します。これが、コールドロールスチールが通常、ホットロールされた(作業中ではない)状態で同じスチールよりも高い降伏強度を持っている理由です。 温度と環境 経験則として、ほとんどの金属は高温で降伏強度を失います。熱は金属を柔らかくするので、力を少なくして変形させることができます。非常に低い温度では、一部の材料はより脆くなります。粗末に変形する能力は減少するため、降伏応力は技術的な意味で増加する可能性がありますが、収量よりも骨折する可能性が高くなります。 腐食や放射線などの環境要因も材料を分解する可能性があります。腐食はピットを作成したり、断面積を減らしたりし、収量する前に構造が処理できる荷重を効果的に削減します。たとえば、錆びた鋼鉄の梁は、腐食されていない荷物よりも低い負荷の下で生成される可能性があります。これは、その有効厚さが減少し、錆からマイクロクラックがストレスを集中させる可能性があるためです。 異なる材料の降伏強度 ストレス - ひずみ曲線は、異なる材料が荷重にどのように反応するかを比較する簡単な方法を提供します。上の図では、4つの典型的な動作を見ることができます。応力が増加するにつれてそれぞれが異なって反応し、その降伏強度はそれらの違いを反映します。 脆性材料:ガラスやセラミックなどの脆性材料は、塑性変形がほとんどありません。彼らは突然骨折するまでほぼ直線に従います。彼らの降伏強度は、彼らが実際に「収量」していないからです。 強いが延性材料ではない:高強度鋼などの一部の材料は、高いストレスに耐えることができますが、延性が限られていることを示します。彼らは高降伏強度を持っています。つまり、永続的な変形によく抵抗しますが、壊れる前にあまり伸びません。 延性材料:軟鋼やアルミニウム合金などの金属は延性があります。それらは特定の応力レベルで屈し、その後、壊れる前に著しい塑性変形を受けます。彼らの降伏強度は、究極の引張強度よりも低く、エンジニアに設計するための安全な「バッファーゾーン」を提供します。 プラスチック材料(ソフトポリマー):ソフトプラスチックとポリマーの降伏強度は比較的低いです。それらは小さなストレスの下で簡単に変形し、明確な降伏点を示さない場合があります。代わりに、それらは骨折への鋭い移行を示すことなく着実に伸びています。 これらの一般的な行動は、実際の降伏強度値を見るとより明確になります。以下の表には、一般的なエンジニアリング材料と比較のための典型的な降伏強度が示されています。 材料降伏強度(MPA)鋼鉄〜448ステンレス鋼〜520銅〜70真鍮〜200+アルミニウム合金〜414鋳鉄〜130典型的な降伏強度値 現実世界で降伏強度が重要な理由 降伏強度は、荷重の下に形状を保持するために材料が必要なときはいつでも重要です。ここにそれが重要な役割を果たすいくつかの領域があります: 建設とインフラストラクチャ 建物や橋では、高降伏強度のために鋼鉄の梁やその他の金属部品が選択されているため、車両、風、さらには地震からの重い荷物を曲げたり、垂れ下げたりすることなく運ぶことができます。通常の使用中にビームが生成された場合、構造の安全性は危険にさらされます。そのため、エンジニアは常にストレスを降伏点をはるかに下回るマージンで設計します。 自動車の安全 現代の車は、衝突中に制御された方法で生成するように設計されたクランプルゾーンを使用します。衝撃力がフロントパネルまたはリアパネルの降伏強度を超えると、これらの領域は、完全な力を乗客に渡すのではなく、永久変形を通してエネルギーをしゃがみ、吸収します。同時に、キャビンは、居住者を保護したままにして、降伏に抵抗する高強度の材料で補強されます。 航空宇宙と輸送 航空機の着陸装置は、永久に曲がることなくタッチダウンの衝撃に耐える必要があります。胴体と翼は、材料が十分な降伏強度を欠いている場合に損傷を引き起こす繰り返しの加圧サイクルと空力的な力に直面します。強度と低重量のバランスをとるために、エンジニアはしばしばアルミニウムやチタンなどの高度な合金に目を向けます。同じ原則は、レールや船体の列車に適用されます。船体は、激しい使用の下で硬直し、永続的な曲がり角やへこみに抵抗する必要があります。 毎日の製品 レンチやドライバーなどの高品質のツールは、高利回りの強さの鋼で作られているため、通常の使用で曲がらないようにしますが、ストレスが降伏強度を超えると、より安価なツールはしばしば恒久的な曲がりを伸ばします。同じアイデアがシンプルなコートハンガーで見ることができます。軽い荷重が戻ってきますが、重い荷物や鋭い曲がりは降伏点を超えて押し進め、形状の永続的な変化を残します。降伏強度は、自転車フレームのような大きなアイテムの設計も導きます。これは、ライダーの重量を運ぶ必要があり、形を屈することなくバンプを吸収する必要があります。 Chiggoを使用して作業します 正確な降伏強度値を日常的なアプリケーションに要求する軽量航空宇宙コンポーネントを設計する場合でも、Chiggoはそれを実現するための専門知識と製造機能を提供します。私たちのチームはAdvancedを組み合わせていますCNC加工、3Dプリント、および深い材料の知識を備えた射出成形を使用して、あなたの部品が意図したとおりに正確に機能することを保証します。今すぐCADファイルをアップロードして、すぐに見積もりを取得してください!
陽極酸化とも呼ばれる陽極酸化は、金属表面に装飾的で耐食性の酸化物層を作成するために使用される電気化学プロセスです。マグネシウムやチタンなどのいくつかの非鉄金属は陽極酸化できますが、アルミニウムはこのプロセスに特に適しています。実際、アルミニウムの陽極酸化処理は、材料の耐久性と外観の両方を大幅に向上させるため、今日広く使用されています。
銅、真鍮、青銅は一般に非鉄金属に分類され、レッドメタルと呼ばれる同じグループに属します。これらはすべて、耐食性、高い電気/熱伝導性、溶接性などの特徴を備えており、建築、電子、アートワーク、機械などの業界で広く使用されています。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español