金属成分は、酸素、水分、高温、機械的摩耗への暴露により、時間とともに加齢と変色する傾向があります。研磨は、腐食開始部位を最小限に抑え、表面汚染を防ぐ鏡の滑らかな表面を作成します。結果として得られる仕上げは、装飾的な魅力を高め、光学反射器などの機能的使用に高い反射率を提供します。さらに、表面の不規則性を除去することにより、研磨はストレス濃縮器として作用するマイクロノッチを排除し、それによって疲労寿命を改善します。
この記事では、磨きの重要な手順と方法を取り上げ、その利点と一般的なアプリケーションを調査し、パフォーマンスと外観の両方を維持するための実用的なヒントを共有します。

研磨は研磨剤を使用して、徐々に欠陥と傷を除去します機械加工部品、滑らかで反射的な表面を達成することを目指しています。材料と望ましい結果に応じて、さまざまな手法を適用できます。たとえば、機械的研磨は一般に金属に使用されますが、化学的方法は特定の種類の石、ガラス、またはプラスチックに適しています。
材料や仕上げの品質に関係なく、研磨プロセスは通常、いくつかの重要なステップに従って、粗い表面を鏡のような仕上げに変換します。
粗い粉砕から始めて、機械加工、溶接、鋳造から大きな表面の不規則性と深い傷を除去します。 40〜60のグリットディスクまたはベルトを備えたアングルグラインダーまたはベルトサンダーを使用して、高スポットをすばやく倒します。次に、120〜240のグリットサンドペーパーを搭載したランダムな軌道サンダーに切り替えて、表面を平準化し、残りの研削マークを消去します。
ラフ化後、ベンチポリッシャーまたはハンドヘルドロータリーツールに取り付けられたウールバフボンネットまたは綿バフングホイールを使用して、切断コンパウンドを部品に塗ります。粗い化合物が残りの傷を除去したら、徐々に細かい研磨化合物を搭載した泡の磨きパッドまたはより細かい布ホイールに切り替えて、マイクログロブを消去し、鏡のような光沢を作ります。きれいなマイクロファイバークロスで表面を拭いて仕上げて、化合物残基を除去し、均一で高反射の仕上げを検証します。

研磨後、部品にはわずかなヘイズまたはマイクロスクラッチがある場合があります。鏡のような仕上げを均一にするために、柔らかい布のホイールをマウントしたり、ポリッシャーにモップをバフしたりし、hazeが消えるまで、均一な圧力で明るい明るい化合物を塗ります。この最後のバフステップは、表面の明るさをさらに強化し、一貫した高反射の仕上げを実現します。
洗練された仕上げを保持するには、保護ワックス、オイル、または透明なラッカーの薄いコートを塗り、表面を密封します。この層は、輝きを維持し、水分と汚染物質を遮断し、コンポーネントのサービス寿命を延長するのに役立ちます。このステップを含め、選択したコーティングを含めるかどうかは、部品の材料、動作環境、耐久性の要件に依存します。

これは、金属加工で最も一般的な仕上げ技術であり、通常は化学または電解の研磨に先行します。研磨ツールとワークピースの間の直接接触に依存して、材料を除去し、傷、ツールマーク、およびその他の表面欠陥を滑らかにします。手作業で、またはベンチポリッシャー、アングルグラインダー、研磨界のベルト、ディスク、ホイール、パッドを備えた軌道サンダーなどの駆動装置で行うことができます。
長所
短所

化学研磨では、ワークピースは制御されたバスに浸され、その溶液は顕微鏡的な高スポットを選択的に溶解し、表面の粗さを滑らかにして均一な明るい仕上げを生成します。お風呂の温度、濃度、および浸漬時間を調整することにより、このプロセスは機械的な摩耗なしでタイトまたは複雑な形状を扱うことができます。
長所
短所

しばしばの逆と見なされます電気めっき。金属を堆積する代わりに、ワークピースは酸電子液の正の電極(アノード)として機能し、カソードを並べて配置します。 DC電流が流れると、金属イオンはアノードの顕微鏡的高スポットから優先的に溶解し、表面を明るい鏡のような仕上げに滑らかにします。
長所
短所

蒸気研磨は、主に透明または半透明のプラスチック、特に3DプリントされたABS、PMMA、またはPCで使用され、光学的透明度と表面の滑らかさを改善します。部品は、溶媒蒸気(アセトンやジクロロメタンなど)が表面層のピークを静かに溶かし、機械的耐摩耗性のない層を消去する密閉室に配置されます。
長所
短所

高度に磨かれた表面は滑らかで、摩擦を減らし、可動部品間の摩耗を減らします。また、この滑らかさにより、表面は細菌を抱く可能性が低くなり、きれいにしやすく、汚染のリスクを減らします。
さらに、磨かれた金属の明るさは光の反射率を高め、しばしば贅沢と品質にリンクし、熱を反射し、熱管理を支援します。これらの利点により、以下を含む、業界全体で幅広いアプリケーションが可能になります。
さまざまな産業や地域では、さまざまなシステムを使用して、洗練された表面グレードを分類しています。仕上げを指定する2つの一般的な方法は、研磨グリットのサイズ(表面粗さと相関する)と視覚的光沢です。典型的な分類を以下に示します。
| 仕上げグレード | グリットサイズ(ANSI) | 説明 |
| 粗い | 40-60 | 大きな傷と溶接マークを取り除くための重い研磨 |
| 中くらい | 80-120 | 適度な滑らかさのための標準的な研磨 |
| 大丈夫 | 180-240 | より滑らかな表面を実現するための細かい研磨 |
| とてもいい | 320-1200 | 非常に滑らかまたは近い環状仕上げのための超洗練された研磨 |
| 学年 | 光沢の説明 | 典型的なアプリケーション |
| マット | 光を拡散させる控えめな光沢 | ハードウェア、まぶしさを最小限に抑える必要があるアートインスタレーション |
| サテン | 低光学、落ち着いた外観 | インテリアデザイン要素、アプライアンスパネル |
| 明るい | 反射的な光沢 | 自動車のディテール、ジュエリー、消費者向けトリム |
| ミラーブライト | 非常に高い、完璧な反射率 | 光学装置、鏡、ハイエンドの装飾品 |
一貫して滑らかでミラー品質の仕上げについては、これらのベストプラクティスを考慮してください。
最良の方法は、素材、一部のジオメトリ、希望の仕上げ、バッチサイズに依存します。ほとんどの金属では、機械的研磨はツールマークを削除するための直接制御を提供しますが、化学物質の研磨またはエレクトロポリ酸塩は、接触せずに明るい腐食抵抗性の光沢を提供し、隠されたチャネルに到達します。蒸気研磨により、透明なプラスチック上の層の線が消去されます。振動仕上げは大きなバッチを効率的に処理し、ハンドツールまたは溶媒蒸気は1回限りのプロトタイプに最適です。
各研磨段階に合わせて研磨剤を選択します:重度の欠陥除去のために40〜80のグリットベルトまたはディスク、表面の滑らかに120〜240グリットパッド、最終グロス用の柔らかい綿またはフォームホイールの400〜800グリット。さらに、部品の形状に合わせてパッドの剛性を選択します。これは、平らな領域用の際立ったパッドと、曲線や輪郭の柔軟で柔軟なパッドです。最後に、各グリットのツール速度と圧力を調整します。RPMSの低下と軽い圧力は、過熱を防ぎ、研磨寿命を延ばします。
各研磨段階の後、グリッツを切り替える前にすべての残留物を取り除きます。糸くずのない布と少し溶媒(イソプロピルアルコールなど)で部品を拭き、圧縮空気で溝をきれいにします。複雑な形の場合は、温水と穏やかな洗剤ですすぎ、完全に乾燥させます。これにより、粗い粒子が新しい傷を引き起こすのを防ぎ、各グリットが一貫した滑らかな仕上げのために効果的に機能することを保証します。
キーステージでの定期的なチェックは、部品を仕様に合わせて、やり直しにしないようにします。各グリットステージの後、良い照明の下で表面を調べるか、ルーペを使用して、スクラッチの除去や光沢さえ確認します。ポータブルプロファイロメーターまたはスタイラステスターを使用して粗さを測定してRAを検証し、キャリパーまたはマイクロメーターを使用して重要な寸法を確認します。オフターゲットの仕上げや寸法逸脱を早期にキャッチすると、圧力、速度、または研磨性のグリットをすぐに調整し、研磨プロセスが軌道に乗っていることを確認できます。
研磨プロセスを文書化するときは、毎回釘付けしたいレシピのように扱います。部品ID、日付、および演算子を記録し、使用した正確なツールと研磨剤(マシンタイプ、パッドまたはホイール素材、および各段階でのグリットサイズ)に注意してください。圧力設定、スピンドルスピードまたはハンドツールRPM、および各グリットに費やした時間を書き留めます。研磨後、ログは表面視線値を測定し、発見した欠陥、およびどのような調整を行ったかを測定しました。これらの詳細を共有形式で保持するため、シンプルなスプレッドシートであろうとデジタルフォームであろうと、勝利セットアップを再現し、物事がうまくいかないときにパターンをスポットし、新しいチームメンバーをより速く訓練できます。
研磨面があなたの製品の審美的な魅力を高めると、それは彼らの機能も改善します。 Chiggoでは、これを理解しており、プロトタイピングビジョンを実現する準備ができています。高品質を提供していますCNC加工3D印刷サービス、磨かれた表面仕上げを含む最上層仕上げ。競争力のある価格で予想される結果を保証します。すぐに見積もりについては、今すぐお問い合わせください!
研磨化合物とは何ですか?
研磨化合物は、培地に混合された細かい研磨粒子を含む物質であり、ペースト、バー、液体、または粉末の形である可能性があります。通常、オブジェクトの表面仕上げを滑らかに改善するために、ホイール、パッド、布などの研磨ツールと組み合わせて使用されます。
バフと研磨の違いは何ですか?
研磨は、表面の欠陥を滑らかにし、表面を準備するために使用されるプロセスであり、通常はより粗い研磨剤を使用しています。それは均一な仕上げを作り出しますが、必ずしも輝きを追加するわけではありません。一方、バフは、研磨後に行われ、より柔らかいホイールを備えたより細かい研磨剤を使用して、高光沢または鏡のような仕上げを実現します。
研磨は表面の平準化に焦点を当てていますが、バフは輝きを高めることを目的としています。
ブラッシングと研磨の違いは何ですか?
ブラッシングと研磨はさまざまな目的を果たし、独特の仕上げを生み出します。ブラッシングは、耐久性を向上させ、欠陥や指紋を隠すのに役立つ、テクスチャのマット仕上げを作成します。対照的に、研磨は非常に反射的で滑らかな表面を生成し、表面の質と外観の両方を改善します。
研磨と仕上げの違いは何ですか?
研磨と仕上げは関連していますが、同一の用語ではありません。仕上げは、洗浄、討論、コーティング、塗装、陽極酸化など、機械加工または製造後の部品の表面を改善するために使用されるすべてのプロセスをカバーする広範な用語です。研磨は、特に研磨剤を使用して粗さを減らし、均一で光沢のある外観を作成するために研磨剤を使用して表面を滑らかにして明るくすることを目的とした仕上げプロセスの1つにすぎません。要するに、すべての研磨は終了していますが、すべての仕上げが研磨されているわけではありません。
他のすべての3D印刷プロセス(ポリマー3Dプリントなど)と同様に、金属3Dプリンターは、デジタル3Dデザインに基づいて一度に材料を追加することにより、材料を追加することで部品を構築します。今回のみ、プロセスはプラスチックの代わりに金属粉末、ワイヤー、またはポリマーに結合したフィラメントを使用します。
パイプスレッドとは何ですか? パイプスレッドはネジですスレッドパイプとフィッティングを結合するために特別に設計されています。パイプをねじ込み、液体またはガスの緊密な耐圧シールを形成します。パイプスレッドには2つの基本的なタイプがあります。 テーパースレッド直径が徐々に減少し、コーンのような形状が作成されます。 パラレル(ストレート)スレッド長さに沿って一定の直径を維持します。 テーパーパイプスレッドは、漏れた接合部を達成するために特に重要です。オスとメスのテーパーの糸が締められると、それらは互いにくびれて、圧縮フィットを形成します。このテーパーウェッジは、シールと強力な機械的ホールドを作成します。ただし、適切にマシンされた金属スレッドでさえ小さなギャップがあるため、シーラント(配管工のPTFEテープやパイプドープなど)が糸に適用され、ボイドを埋め、完全に漏れない接続を確保します。 一方、パラレル(ストレート)パイプスレッドは、それ自体でシールを提供しません。彼らはくさびずにねじ込みます。通常、ストレートスレッドは、漏れを防ぐために、フランジのフラットワッシャー、Oリング、またはガスケットで密閉されています。どちらのタイプのスレッドも一般的ですが、選択はアプリケーションのシーリングニーズに依存します。たとえば、庭のホースは、ゴム製の洗濯機を備えたストレートスレッドを使用してシールしますが、スチールの配管パイプはテープでテーパー糸を使用します。 タップドリルチャートとは何ですか? タップドリルチャートは、スレッドをタップする前に使用するドリルビットを示すテーブルです。穴が大きすぎると穴を開けると、糸が浅く漏れやすくなります。ドリルが小さすぎると、タップが過度に深い糸を切るときにバインドしたり壊れたりすることさえあります。チャートに従うことで、通常は約75%である最適なスレッドエンゲージメントが得られます。これは、強度とタッピングのバランスをとります。言い換えれば、完全な糸の高さの約4分の3が形成され、タッピング中に過度のトルクなしで強力なホールドを生成します。次のセクションでは、北米の最も一般的なパイプスレッド標準NPTに焦点を当て、NPTパイプタップの包括的なタップドリルチャートを提供します。 NPT(National Pipe Taper)スレッドの理解 NPTは、ナショナルパイプテーパースレッドの略です。これは、配管、エアホース、燃料ライン、その他多くのアプリケーションのために米国およびカナダで使用される標準的なテーパーパイプスレッドです。パイプの周りにPTFE(Teflon)テープを巻き付けたり、フィッティングをラップしたことがある場合は、NPTスレッドを使用した可能性があります。これらのスレッドは1:16の比率でテーパーします。つまり、長さ16インチ(1フィートあたり約0.75インチ)ごとに直径が1インチ増加します。これは、パイプの中心線に比べて1.79°の半角に対応します。それはわずかに見えるかもしれませんが、男性のnptフィッティングが女性のポートにねじ込まれているため、スレッドがくすくると、さらに密集して干渉のフィット感が生じることを保証するのに十分です。 NPTは、標準の米国のネジと同じ60°スレッドプロファイルを使用しますが、強度を高めるために平らな紋章と根を備えています。インチあたりのスレッド(TPI)、ピッチの直径の制限、スレッドエンゲージメントの長さを含むすべての重要な寸法と公差は、ANSI/ASME B1.20.1で定義されています。パイプのサイズは、公称内径(例:½インチまたは¾インチ)で命名されていますが、その数は実際の外径を反映していません。たとえば、¾インチNPTパイプは約1.050インチのODです。さらに、BSPTやNPSなどの標準は名目サイズを共有しているが、異なるピッチまたはスレッドフォームを使用するため、名目サイズ(ODと一致するように)とTPI(スレッドピッチと一致するように)の両方を指定して、正しいタップまたはフィッティングを選択する必要があります。 NPTジオメトリの公式感覚を示すには、½インチNPTスレッドを例として使用します。14TPIと16テーパーに1つあります。スレッドフォームは、中心線から正確に1°47 '24' '(1.7899°)のコーンハーフアングルが付いた平らな60°「V」です。これは、男性と女性の両方のスレッドに等しく適用されます。フィッティングを手渡すと、約3〜4個のスレッド(「L1ゲージの長さ」)が小さなサイズで関与します。レンチを使用すると、「レンチメイク」の別の1.5〜3個のスレッドが追加され、シールが完成されます。 多くの場合、「MIP/FIP」や「MNPT/FNPT」(男性/女性の鉄パイプまたはNPT)などのショップの速記を見ると、外部スレッドと内部スレッドを区別します。関係なく、ANSIは単に外部または内部NPTを呼び出しますが、ニックネームはどちらが現場であるかを迅速に識別します。 NPTスレッドのしくみ 男性と女性の両方の糸が先細になっているため、それらを締めるとくさび効果が生じます。糸の側面は互いに絞り、機械的に強くて非常にタイトなジョイントを形成します。わずか数回転した後、適切に締められたNPTジョイントがぴったりと感じることに気付くでしょう。それがテーパーが仕事をしていることです。ただし、NPTスレッドは、それ自体で完全に漏れているわけではありません。シーラントを使用しないと、糸の間に小さなスパイラルギャップが残り、漏れがあります。そのため、インストーラーはオスの糸をPTFEテープに包むか、アセンブリ前に液体/ペーストシーラントにブラシをかけます。糸を潤滑してマイクロギャップを埋め、ガスまたは水密シールを確保します。燃料ガスまたは油圧システムでは、細断されたテープがバルブを詰まらせることができますが、技術者はしばしばペーストシーラントを好みます。 NPTスレッドのアプリケーション NPTスレッドは、日常的および産業用設定のいたるところにあります。住宅水とガス配管は、信頼できる漏れ抵抗のためにNPT継手に依存しています。空気圧ツールとエアコンプレッサーは、ホース、バルブ、クイックコネクトカプラーにNPTコネクタを使用します。自動車および重機では、NPT継手はセンサー(油圧送信者など)や流動的なライン(ブレーキまたはクーラントシステム)を提供し、そのシンプルさとさまざまな既製の部品を誇示しています。 ANSIに準拠したタップ、ダイ、フィッティングはすべて同じ仕様に従うため、心配することなくブランドを混ぜることができます。この普遍的な互換性により、NPTは北米の頼りになるパイプスレッドになりました。 NPTタップドリルチャート 穴に内部NPTスレッドを作成する場合(たとえば、NPTプラグ用のタンクのパイプフィッティングまたは穴をタップする場合)、最初に適切なサイズの穴をドリルする必要があります。 NPTスレッドはテーパーになっているため、掘削された穴は通常、タップの最大の直径よりも少し小さく、タップがテーパーを進むにつれてテーパーをカットできるようにします。以下は、一般的なパイプサイズの包括的なNPTタップドリルチャートです: 公称パイプサイズ(in。)インチあたりのスレッド(TPI)ドリルをタップする(in。)タップドリル(mm)スレッドエンゲージメント(%)1/16270.2426.15〜75%1/8270.3328.43〜75%1/4180.4375(7/16インチ)11.11〜75%3/8180.5625(9/16インチ)14.29〜75%1/2140.7031(45/64インチ)17.86〜75%3/4140.9063(29/32インチ)23.02〜75%111½1.1406(1-9/64インチ)28.97〜75%1¼11½1.4844(1-31/64インチ)37.70〜75%1½11½1.7188(1-23/32インチ)43.66〜75%211½2.2188(2-7/32インチ)56.36〜75%2½82.6250(2-5/8インチ)66.67〜75%383.2500(3-1/4インチ)82.55〜75%3½83.7500(3-3/4インチ)95.25〜75%484.2500(4-1/4インチ)107.95〜75% 注記: 上記のタップドリルサイズは、リーミングせずに直接タッピングを想定しています。スレッドエンゲージメント(%)は、達成された完全なスレッドの深さの割合を示します。たとえば、パイプスレッドでは75%が典型的であり、ジョイント強度のバランス、タッピングトルクです。括弧内のドリルサイズは、標準的な文字またはフラクションのビットまたはリーマーサイズです(たとえば、1/8-27 NPTは、文字Qドリル、0.332インチを使用します)。 パイプタップはテーパーになっているため、正しいスレッドテーパーを形成するのに十分な深さをタップする必要があります。メーカーは、多くの場合、必要な数のエンゲージスレッドを指定するか、NPTプラグゲージで確認することができます。定期的に戻ってチップをクリアし、金属をタップするときに切断液を使用します。パイプタップは、大きな直径とテーパーのためにかなりの量の材料を除去します。 テーパーリーマーが利用可能な場合は、タップする前に1:16テーパーリーマーで掘削された穴を最初に繰り返すことができます。これにより、タッピングトルクが減少し、穴の端でスレッドエンゲージメントがわずかに増加する可能性があります。ただし、ほとんどのフィールドアプリケーションとDIYアプリケーションは、上記のストレートドリルアンドタップ方法を使用しており、十分にタイトなジョイントを提供します。 NPTを他のスレッドタイプと比較します NPTF(ナショナルパイプテーパー燃料) これは、ドライシールテーパーパイプスレッドで、しばしばDryseal NPTまたはパイプスレッド燃料と呼ばれます。標準NPTと同じテーパー(1:16)とスレッドピッチ、および60°のスレッド角もあります。重要な違いは、スレッドの頂上とルートの設計です。NPTFスレッドは、頂上と根でクリアランスがゼロであるため、シーラントなしで金属間をシールする干渉適合が生成されます。これにより、NPTFは超漏れに敏感なアプリケーションに理想的になります。ここでは、小さな漏れやシーラントの汚染でさえも受け入れられません。 NPTFとNPTは次元を共有し、物理的に合わせますが、NPTFの男性と女性のみが乾燥シールを生成します。 NPTFはANSI/ASME B1.20.3で定義され、標準NPTはB1.20.1を使用します。 典型的な用途:高圧油圧システム;燃料システム;その他の流体電力アプリケーション(たとえば、ブレーキシステムコンポーネントや燃料網装備)。 NPS(全国パイプストレート) このスレッド標準は、対応するNPTサイズと同じスレッド角、形状、ピッチを持っていますが、先細ではなくまっすぐ(平行)です。 NPSスレッドは同じサイズとTPIのNPTフィッティングにねじ込まれますが、テーパーの欠如はくさびシールを防ぎ、漏れる可能性があります。 NPSスレッドは、機械的接続に使用されます。または、SEALINGがOリングやガスケットなどの別の要素によって提供されます。 典型的な用途:電気導管糸(しばしばNPSMと呼ばれる)、火災ホースのカップリングまたは大口径の水パイプユニオン、ガスランタンまたは古いスタイルの配管組合がシール洗濯機またはガスケットがシールを作成します。 BSPスレッド(BSPT&BSPP - 英国の標準パイプ) このパイプスレッドシステムは、英国、ヨーロッパ、アジア、および北米以外の多くの地域で一般的に使用されています。 BSPT(英国の標準パイプテーパー)とBSPP(英国標準パイプパラレル)の2つの基準があります。 BSPTは、NPTと同様の概念で囲まれたくさびで圧力標識ジョイントを形成することを目的としたテーパースレッドですが、NPTの60°の平らなプロファイルの代わりに、丸い紋章と根を備えた55°の糸角(ホイットワース形式)を使用します。公称サイズあたりのスレッドピッチもNPTとは異なるため、BSPTとNPTフィッティングは互換性がなく、適切にシールしたり、1ターンもターンしたりすることはありません。 BSPPスレッドはストレート(パラレル)であり、独自にシールしません。彼らは、ポートフェイスで結合洗濯機またはOリングに依存しています(たとえば、バルブやシリンダーの「G」スレッドは、肩の下にOリングを使用します)。 BSP標準は、ISO 7-1(テーパーパイプスレッド)とISO 228-1(平行パイプスレッド)で定義されます。実際には、「BSP」または「Gスレッド」というラベルの付いたフィッティングには、NPTと結合するためにBSPスレッドパーツまたはアダプターを一致させる必要があります。 […]
ストレスとひずみは、材料が力にどのように反応するかを説明するための最も重要な概念の2つです。応力は、負荷下の材料内の単位面積あたりの内部力であり、ひずみは、適用された力から生じる材料の形状の変形または変化です。 ただし、ストレスとひずみの関係は理論をはるかに超えています。これは、健全なエンジニアリングの決定に不可欠です。それらを並べて比較することにより、材料のパフォーマンス、安全性がどれだけ安全に変形できるか、いつ失敗する可能性があるかをよりよく予測できます。この記事では、それらの定義、違い、関係、および実用的なアプリケーションについて説明します。 詳細に入る前に、ストレスと緊張に関するこの短い入門ビデオが役立つことがあります。 ストレスとは ストレスは、外部負荷に抵抗するために材料が発達する単位面積あたりの内部力です。顕微鏡的に、適用された負荷は、変形に反対し、構造を一緒に「保持」する原子間力を誘導します。この内部抵抗は、私たちがストレスとして測定するものです。 負荷の適用方法によっては、ストレスは次のように分類されます。 引張応力(σt)および圧縮応力(σc):これらは、断面領域に垂直に作用する正常な応力です。 せん断応力(τ):断面領域と平行に作用する接線力によって引き起こされます。 ねじれ応力(τt):トルクまたはねじれによって誘発されるせん断応力の特定の形態。 その中で、引張ストレスは、エンジニアリング設計における最も基本的なタイプのストレスです。計算式は次のとおりです。 どこ: σ=ストレス(Paまたはn/m²;時々psi) f =適用力(n) a =力が適用される元の断面領域(m²) 材料のストレスがどのように測定されるか 直接ストレスを測定することは不可能なので、代わりに、適用された力または結果として生じる変形のいずれかを測定する必要があります。以下は、重要な測定技術の簡潔な概要です。 方法 /テクノロジー原理測定デバイス /ツール精度と精度一般的なアプリケーションユニバーサルテストマシン(UTM))測定力(f)、ストレス= f/aを計算します統合されたロードセルを備えたUTM★★★★★(高精度)基本的な材料テスト:ストレス - ひずみ曲線、機械的特性評価ひずみゲージ測定ひずみ(ε)、σ= e・ε(線形弾力性を想定)を介して応力を計算する ひずみゲージ、データ収集システム★★★★☆(高)コンポーネント応力分析;疲労評価;組み込み構造監視拡張計測定値の長さの変化、εとσを計算します接触または非接触拡張メーター★★★★☆(高)標本の引張試験;弾性弾性率と降伏ひずみの検証デジタル画像相関(DIC)光学方法は、フルフィールドの表面変形を追跡します高速カメラシステム、DICソフトウェア★★★★☆(フルフィールド)フルフィールドひずみ分析。クラック追跡;物質的な不均一性研究超音波ストレス測定ストレス下での材料の波速度の変化を使用します超音波プローブとレシーバー★★★☆☆(中程度)残留応力検出;溶接されたジョイントと大きな構造における応力監視X線回折(XRD)内部応力によって引き起こされる格子歪みを測定しますXRD回折計、専門ソフトウェア★★★★☆(高精度、表面層に局在する)薄膜、溶接ゾーン、金属およびセラミックの表面残留応力光弾性透明な複屈折材料の光学干渉フリンジを介してストレスを視覚化します偏光のセットアップと複屈折ポリマーモデル★★★☆☆(半定量的な定性)教育デモ;透明モデルにおける実験的ストレス分析マイクロ/ナノスケールの特性評価技術 EBSD、マイクロラマン、ナノインデンテーションなどのテクニックは、マイクロまたはナノスケールのひずみ/ストレスマッピングを提供します 電子またはレーザーベースのシステム、画像分析ソフトウェア★★★★☆(高精度;ローカライズされたマイクロ/ナノスケール) マイクロエレクトロニクス、薄膜、ナノインデンテーション、複合界面の動作 ひずみとは ひずみは、外力にさらされると材料が受ける相対変形の尺度です。これは、単位のない量またはパーセンテージとして表現され、元の長さ(または寸法)の長さ(またはその他の寸法)の変化を表します。 ひずみのタイプは、適用されるストレスに対応します:引張ひずみ、圧縮ひずみ、またはせん断ひずみ。 通常のひずみの式は次のとおりです。 どこ: ϵ =ひずみ(無次元または%で表されます) ΔL=長さの変化 l0=元の長さ 材料の株が測定される方法 さまざまな方法を使用して、ひずみを測定できます。最も一般的に使用される手法は、ひずみゲージと伸筋です。以下の表は、材料のひずみを測定するための一般的な方法をまとめたものです。 方法センシング原則センサー /トランスデューサー測定シナリオ備考ひずみゲージ抵抗の変化フォイルタイプのひずみゲージ静的または低周波ひずみ;一般的に使用されます業界で広く使用されています。低コスト;接着剤の結合と配線接続が必要です拡張計変位クリップオン /コンタクト拡張計材料テスト;全セクション測定高精度;動的テストや高度に局所的な株に適していませんデジタル画像相関(DIC)光学追跡カメラ +スペックルパターンフルフィールドひずみマッピング。亀裂伝播;複雑な形の標本非接触; 2D/3D変形マッピング。高価なシステム圧電センサー圧電効果圧電フィルムまたはクリスタル動的ひずみ、圧力、衝撃、振動高周波応答;静的ひずみ測定には適さないファイバーブラッググレーティング(FBG)光学(ブラッグリフレクション)FBG光ファイバーセンサー長距離にわたる分布または多重化測定EMIの免疫;航空宇宙、エネルギー、スマート構造に適していますレーザードップラー振動計(LDV)ドップラー効果LDVレーザープローブ動的ひずみ/速度測定と表面振動分析非接触;高解像度;高い;表面条件に敏感です ストレスとひずみの重要な違い 以下は、直接の概要を提供するクイックテーブルです。 側面ストレス歪み式σ= f / aε=Δl /l₀ユニットPA(n/m²)、またはpsi(lbf/in²)無次元または%原因外力ストレスによって引き起こされる変形効果内部力を生成して、外部負荷に対抗します。高すぎる場合、塑性変形、骨折、疲労障害、ストレス腐食亀裂につながる可能性があります材料のジオメトリを変更します。降伏点を超えて永続的に弾性制限で回復可能行動材料が抵抗しなければならない領域ごとの内部力。分布に応じて、圧縮、張力、曲げ、またはねじれを引き起こす可能性があります適用された応力下で材料がどれだけ変形するかを説明します。弾性またはプラスチックにすることができます ストレスと緊張が互いにどのように関連するか ストレスはひずみを引き起こします。応力 - ひずみ曲線は、適用された応力に対してひずみ(変形)をプロットすることにより、材料が徐々に増加する荷重の下でどのように変形するかをグラフ化します。その重要なポイントを確認しましょう。 1。弾性領域(ポイントO – B) […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español