金属成分は、酸素、水分、高温、機械的摩耗への暴露により、時間とともに加齢と変色する傾向があります。研磨は、腐食開始部位を最小限に抑え、表面汚染を防ぐ鏡の滑らかな表面を作成します。結果として得られる仕上げは、装飾的な魅力を高め、光学反射器などの機能的使用に高い反射率を提供します。さらに、表面の不規則性を除去することにより、研磨はストレス濃縮器として作用するマイクロノッチを排除し、それによって疲労寿命を改善します。
この記事では、磨きの重要な手順と方法を取り上げ、その利点と一般的なアプリケーションを調査し、パフォーマンスと外観の両方を維持するための実用的なヒントを共有します。

研磨は研磨剤を使用して、徐々に欠陥と傷を除去します機械加工部品、滑らかで反射的な表面を達成することを目指しています。材料と望ましい結果に応じて、さまざまな手法を適用できます。たとえば、機械的研磨は一般に金属に使用されますが、化学的方法は特定の種類の石、ガラス、またはプラスチックに適しています。
材料や仕上げの品質に関係なく、研磨プロセスは通常、いくつかの重要なステップに従って、粗い表面を鏡のような仕上げに変換します。
粗い粉砕から始めて、機械加工、溶接、鋳造から大きな表面の不規則性と深い傷を除去します。 40〜60のグリットディスクまたはベルトを備えたアングルグラインダーまたはベルトサンダーを使用して、高スポットをすばやく倒します。次に、120〜240のグリットサンドペーパーを搭載したランダムな軌道サンダーに切り替えて、表面を平準化し、残りの研削マークを消去します。
ラフ化後、ベンチポリッシャーまたはハンドヘルドロータリーツールに取り付けられたウールバフボンネットまたは綿バフングホイールを使用して、切断コンパウンドを部品に塗ります。粗い化合物が残りの傷を除去したら、徐々に細かい研磨化合物を搭載した泡の磨きパッドまたはより細かい布ホイールに切り替えて、マイクログロブを消去し、鏡のような光沢を作ります。きれいなマイクロファイバークロスで表面を拭いて仕上げて、化合物残基を除去し、均一で高反射の仕上げを検証します。

研磨後、部品にはわずかなヘイズまたはマイクロスクラッチがある場合があります。鏡のような仕上げを均一にするために、柔らかい布のホイールをマウントしたり、ポリッシャーにモップをバフしたりし、hazeが消えるまで、均一な圧力で明るい明るい化合物を塗ります。この最後のバフステップは、表面の明るさをさらに強化し、一貫した高反射の仕上げを実現します。
洗練された仕上げを保持するには、保護ワックス、オイル、または透明なラッカーの薄いコートを塗り、表面を密封します。この層は、輝きを維持し、水分と汚染物質を遮断し、コンポーネントのサービス寿命を延長するのに役立ちます。このステップを含め、選択したコーティングを含めるかどうかは、部品の材料、動作環境、耐久性の要件に依存します。

これは、金属加工で最も一般的な仕上げ技術であり、通常は化学または電解の研磨に先行します。研磨ツールとワークピースの間の直接接触に依存して、材料を除去し、傷、ツールマーク、およびその他の表面欠陥を滑らかにします。手作業で、またはベンチポリッシャー、アングルグラインダー、研磨界のベルト、ディスク、ホイール、パッドを備えた軌道サンダーなどの駆動装置で行うことができます。
長所
短所

化学研磨では、ワークピースは制御されたバスに浸され、その溶液は顕微鏡的な高スポットを選択的に溶解し、表面の粗さを滑らかにして均一な明るい仕上げを生成します。お風呂の温度、濃度、および浸漬時間を調整することにより、このプロセスは機械的な摩耗なしでタイトまたは複雑な形状を扱うことができます。
長所
短所

しばしばの逆と見なされます電気めっき。金属を堆積する代わりに、ワークピースは酸電子液の正の電極(アノード)として機能し、カソードを並べて配置します。 DC電流が流れると、金属イオンはアノードの顕微鏡的高スポットから優先的に溶解し、表面を明るい鏡のような仕上げに滑らかにします。
長所
短所

蒸気研磨は、主に透明または半透明のプラスチック、特に3DプリントされたABS、PMMA、またはPCで使用され、光学的透明度と表面の滑らかさを改善します。部品は、溶媒蒸気(アセトンやジクロロメタンなど)が表面層のピークを静かに溶かし、機械的耐摩耗性のない層を消去する密閉室に配置されます。
長所
短所

高度に磨かれた表面は滑らかで、摩擦を減らし、可動部品間の摩耗を減らします。また、この滑らかさにより、表面は細菌を抱く可能性が低くなり、きれいにしやすく、汚染のリスクを減らします。
さらに、磨かれた金属の明るさは光の反射率を高め、しばしば贅沢と品質にリンクし、熱を反射し、熱管理を支援します。これらの利点により、以下を含む、業界全体で幅広いアプリケーションが可能になります。
さまざまな産業や地域では、さまざまなシステムを使用して、洗練された表面グレードを分類しています。仕上げを指定する2つの一般的な方法は、研磨グリットのサイズ(表面粗さと相関する)と視覚的光沢です。典型的な分類を以下に示します。
| 仕上げグレード | グリットサイズ(ANSI) | 説明 |
| 粗い | 40-60 | 大きな傷と溶接マークを取り除くための重い研磨 |
| 中くらい | 80-120 | 適度な滑らかさのための標準的な研磨 |
| 大丈夫 | 180-240 | より滑らかな表面を実現するための細かい研磨 |
| とてもいい | 320-1200 | 非常に滑らかまたは近い環状仕上げのための超洗練された研磨 |
| 学年 | 光沢の説明 | 典型的なアプリケーション |
| マット | 光を拡散させる控えめな光沢 | ハードウェア、まぶしさを最小限に抑える必要があるアートインスタレーション |
| サテン | 低光学、落ち着いた外観 | インテリアデザイン要素、アプライアンスパネル |
| 明るい | 反射的な光沢 | 自動車のディテール、ジュエリー、消費者向けトリム |
| ミラーブライト | 非常に高い、完璧な反射率 | 光学装置、鏡、ハイエンドの装飾品 |
一貫して滑らかでミラー品質の仕上げについては、これらのベストプラクティスを考慮してください。
最良の方法は、素材、一部のジオメトリ、希望の仕上げ、バッチサイズに依存します。ほとんどの金属では、機械的研磨はツールマークを削除するための直接制御を提供しますが、化学物質の研磨またはエレクトロポリ酸塩は、接触せずに明るい腐食抵抗性の光沢を提供し、隠されたチャネルに到達します。蒸気研磨により、透明なプラスチック上の層の線が消去されます。振動仕上げは大きなバッチを効率的に処理し、ハンドツールまたは溶媒蒸気は1回限りのプロトタイプに最適です。
各研磨段階に合わせて研磨剤を選択します:重度の欠陥除去のために40〜80のグリットベルトまたはディスク、表面の滑らかに120〜240グリットパッド、最終グロス用の柔らかい綿またはフォームホイールの400〜800グリット。さらに、部品の形状に合わせてパッドの剛性を選択します。これは、平らな領域用の際立ったパッドと、曲線や輪郭の柔軟で柔軟なパッドです。最後に、各グリットのツール速度と圧力を調整します。RPMSの低下と軽い圧力は、過熱を防ぎ、研磨寿命を延ばします。
各研磨段階の後、グリッツを切り替える前にすべての残留物を取り除きます。糸くずのない布と少し溶媒(イソプロピルアルコールなど)で部品を拭き、圧縮空気で溝をきれいにします。複雑な形の場合は、温水と穏やかな洗剤ですすぎ、完全に乾燥させます。これにより、粗い粒子が新しい傷を引き起こすのを防ぎ、各グリットが一貫した滑らかな仕上げのために効果的に機能することを保証します。
キーステージでの定期的なチェックは、部品を仕様に合わせて、やり直しにしないようにします。各グリットステージの後、良い照明の下で表面を調べるか、ルーペを使用して、スクラッチの除去や光沢さえ確認します。ポータブルプロファイロメーターまたはスタイラステスターを使用して粗さを測定してRAを検証し、キャリパーまたはマイクロメーターを使用して重要な寸法を確認します。オフターゲットの仕上げや寸法逸脱を早期にキャッチすると、圧力、速度、または研磨性のグリットをすぐに調整し、研磨プロセスが軌道に乗っていることを確認できます。
研磨プロセスを文書化するときは、毎回釘付けしたいレシピのように扱います。部品ID、日付、および演算子を記録し、使用した正確なツールと研磨剤(マシンタイプ、パッドまたはホイール素材、および各段階でのグリットサイズ)に注意してください。圧力設定、スピンドルスピードまたはハンドツールRPM、および各グリットに費やした時間を書き留めます。研磨後、ログは表面視線値を測定し、発見した欠陥、およびどのような調整を行ったかを測定しました。これらの詳細を共有形式で保持するため、シンプルなスプレッドシートであろうとデジタルフォームであろうと、勝利セットアップを再現し、物事がうまくいかないときにパターンをスポットし、新しいチームメンバーをより速く訓練できます。
研磨面があなたの製品の審美的な魅力を高めると、それは彼らの機能も改善します。 Chiggoでは、これを理解しており、プロトタイピングビジョンを実現する準備ができています。高品質を提供していますCNC加工3D印刷サービス、磨かれた表面仕上げを含む最上層仕上げ。競争力のある価格で予想される結果を保証します。すぐに見積もりについては、今すぐお問い合わせください!
研磨化合物とは何ですか?
研磨化合物は、培地に混合された細かい研磨粒子を含む物質であり、ペースト、バー、液体、または粉末の形である可能性があります。通常、オブジェクトの表面仕上げを滑らかに改善するために、ホイール、パッド、布などの研磨ツールと組み合わせて使用されます。
バフと研磨の違いは何ですか?
研磨は、表面の欠陥を滑らかにし、表面を準備するために使用されるプロセスであり、通常はより粗い研磨剤を使用しています。それは均一な仕上げを作り出しますが、必ずしも輝きを追加するわけではありません。一方、バフは、研磨後に行われ、より柔らかいホイールを備えたより細かい研磨剤を使用して、高光沢または鏡のような仕上げを実現します。
研磨は表面の平準化に焦点を当てていますが、バフは輝きを高めることを目的としています。
ブラッシングと研磨の違いは何ですか?
ブラッシングと研磨はさまざまな目的を果たし、独特の仕上げを生み出します。ブラッシングは、耐久性を向上させ、欠陥や指紋を隠すのに役立つ、テクスチャのマット仕上げを作成します。対照的に、研磨は非常に反射的で滑らかな表面を生成し、表面の質と外観の両方を改善します。
研磨と仕上げの違いは何ですか?
研磨と仕上げは関連していますが、同一の用語ではありません。仕上げは、洗浄、討論、コーティング、塗装、陽極酸化など、機械加工または製造後の部品の表面を改善するために使用されるすべてのプロセスをカバーする広範な用語です。研磨は、特に研磨剤を使用して粗さを減らし、均一で光沢のある外観を作成するために研磨剤を使用して表面を滑らかにして明るくすることを目的とした仕上げプロセスの1つにすぎません。要するに、すべての研磨は終了していますが、すべての仕上げが研磨されているわけではありません。
延性は、物質科学の基本的な概念であり、一部の材料(金属など)がストレスの下で大幅に曲がったり伸ばすことができるのかを説明しますが、他の材料(ガラスなど)が突然スナップします。この記事では、延性とは何か、それがどのように測定され、なぜ重要なのか、どの要因がそれに影響するかを説明します。 延性の定義 延性とは、骨折前に張力で塑性変形を受ける材料の能力です。簡単に言えば、延性材料は、スナップせずに長い道のりを伸ばすことができます。対照的に、ガラスのような脆い材料は、ほとんど変形がほとんどない後、割れたり粉砕する傾向があります。材料科学では、塑性変形は形状の永続的な変化です。これは弾性変形とは異なり、荷重が除去されると回復可能です。延性は可塑性と密接に関連していますが、より具体的です。可塑性は、任意のモード(張力、圧縮、またはせん断)で永続的な変形の一般的な能力ですが、延性は張力の能力を指します。 原子の観点から見ると、多くの金属の高い延性は、非方向性金属結合と、転位を移動できるスリップシステムの利用可能性に由来しています。ストレスが加えられると、転位グライドは金属製の結晶がプラスチックのひずみに対応できるため、金属は骨折ではなく曲がったり伸びたりすることがよくあります。対照的に、セラミックとガラスには方向性のあるイオンまたは共有結合があり、非常に限られたスリップがあるため、緊張の下でかなりのプラスチックの流れの前に割れる傾向があります。ただし、すべての金属が室温で延性しているわけではありません(たとえば、一部のBCC金属、高炭素鋼、金属グラスは比較的脆くなる可能性があります)、およびメタリックスタイルの延性ではないガラス遷移温度を上回る粘性流量によって主に加熱されたガラス曲げが加熱されます。 延性の測定 引張試験は延性を定量化する最も一般的な方法です。標本は骨折に一軸の張力で負荷をかけ、延性は破損時の伸長と面積の減少率として報告されます。 休憩時の伸び率(A%) 破壊時のゲージ長の増加率:A%=(LF -L0)/L0×100%、L0は元のゲージ長、LFは破壊時の最終長さです。 A%が高いほど、引張延性が大きくなることを示します。 面積の減少率(RA%) 破壊位置での断面の割合の減少:RA%=(A0 - AF)/A0×100%。ここで、A0は元の面積であり、AFはブレークの最小面積です。大規模なRA%は、顕著なネッキングと強力なセブキング後延性を反映しています。 (ゲージの長さに敏感ではありません。非常に薄いシートには理想的ではありません。) 両方の測定値は、通常、引張試験の一部として報告されます。たとえば、鋼のサンプルは、たとえば20%の伸びと破損時の面積の60%の減少を持っていると説明される場合があります。これは、延性挙動を示しています。対照的に、脆性セラミックは、伸びが1%しかなく、本質的に0%の面積の減少を示す場合があります(ほぼ薄くなることなく壊れます)。伸びと面積の減少が大きいほど、材料の延性が高くなります。 延性を視覚化する別の方法は、引張試験から得られたグラフであるストレス - ひずみ曲線です。ストレス(単位面積あたりの力)は、ひずみ(相対変形)に対してプロットされます。この曲線のキーポイントには次のものがあります。 ヤングモジュラス(E):線形弾性領域の勾配。剛性の尺度。 降伏強度(σᵧ):塑性変形の開始(多くの場合、シャープな降伏点が存在しない場合、0.2%のオフセット法で定義されます)。 究極の引張強度(UTS):最大のエンジニアリング応力。標本の首を超えて。骨折は、通常、エンジニアリングストレスが低い場合に発生します。 骨折ポイント:標本が最終的に壊れる場所。 延性材料(青)の代表的な応力 - ひずみ曲線(赤) 延性材料の曲線は、生成後に長いプラスチック領域を示し、骨折前に大きなひずみを維持できることを示しています。対照的に、脆性材料の曲線は降伏点の近くで終わり、プラスチック領域はほとんどまたはまったくありません。要約すると、エンジニアリング応力 - 伸縮グラフ(指定されたゲージの長さの場合)では、延性が骨折する総ひずみによって延性が反映されます。これは、乳酸材料の長いもので、脆性材料の略です。ただし、見かけの骨折ひずみは選択したゲージの長さに依存し、ネッキングが開始すると変形が局所化されるため、エンジニアリング曲線は延性後延性の直接的な尺度ではありません。そのため、仕様は通常、面積の割合(RA%)の割合とともに、破損時の伸び(A%)を報告します。 延性と柔軟性の違いは何ですか? 延性は、壊れずに緊張を伸ばす材料の能力です。引張試験からの面積の伸長率または縮小で定量化します。金属をワイヤーに引き込むことができる場合、延性があります。閉鎖性とは、亀裂なしで圧縮で変形する材料である材料の能力です。曲げ/平坦化/カッピングテスト、またはどれだけの厚さの減少が許容できるかで判断します。 実際には、金、銅、アルミニウムは両方とも非常に延性があり、順応性があります(ワイヤーとシートに最適です)。鉛は非常に順応性がありますが、適度に延性しかありません(シートに転がるのは簡単で、細いワイヤーのように貧弱です)。マグネシウムは室温で順応性が制限されていますが、亜鉛は温めたときに順応性が高くなります。製造用に、描画、深いストレッチ、プル支配的な機能のための延性合金を選択します。圧縮が支配する場所でローリング、スタンピング、および鍛造のために、順応性合金を選択します。温度と結晶構造は両方の特性をシフトします。クイックルール:ダクタリティ=張力/ワイヤー;閉鎖性=圧縮/シート。 なぜ延性が重要なのか 延性は、製造可能性とサービス内の安全性の両方の背後にある静かな主力です。工場では、金属をシートに丸め、ワイヤーに引き込んで、割れずに鍛造できます。フィールドでは、コンポーネントがエネルギーを吸収し、ストレスを再分配し、故障前に警告を提供できるようにします。 製造用の延性材料 一般に、延性が高いということは、材料が実行可能であることを意味します。亀裂なしに、鍛造、巻き、巻き、描画、またはさまざまな形に押し出ることができます。低延性(brittleness)は、材料を変形させるのが難しく、鋳造や機械加工などのプロセスに適していることを意味します(材料が形状を幅広く変化させない場合)。 鍛造とローリング:これらのプロセスは、固体金属を形状に変形させます - ハンマー(鍛造)またはロール間の通過(ローリング)。延性金属は、関与する大きなプラスチック株に耐えます。実際には、鋼のスラブ/ブルームはシート、プレート、およびIビームなどの構造形状にホットロールされ、アルミニウムはコンポーネントに容易に鍛造されます。対照的に、鋳鉄のような脆い合金は、重い変形の下で割れる傾向があるため、通常、ネットの形に鋳造することで形作られます。 押し出しとワイヤー/バーの描画:押し出しは、ダイを通して金属を押して、長く一定の交差セクション製品を作る。ワイヤー/バーの描画は、直径を減らすためにダイを通して固体ストックを引っ張ります。どちらもプラスチックの流れに依存しています。アルミニウム、銅、低炭素鋼などの延性合金は、チューブとプロファイル(窓枠、ヒートシンクセクションなど)に押し出され、細かい電気線に引き込まれます。加工温度で十分な延性のない材料は、ダイをチェックまたは亀裂する傾向があるため、ガラスまたはセラミックが固体状態に押し出されたり描かれたりしないのです。代わりに繊維が溶けて描かれています。 ディープドローイング:深い描画は、パンチでシートをダイに強制することにより、軸対称カップと缶を形成します。フランジは内側に餌を与え、壁はわずかに薄くなります。適切な延性は、分割やしわを防ぎます。アルミニウムの飲料canボディは古典的な例です。 板金の曲げとスタンピング:ボディパネルとエンクロージャーの一般的な曲げとスタンピングは、シートがダイで伸びているときにエッジのひび割れやオレンジピールを避けるために延性を必要とします。鋼鉄とアルミニウムのグレードは、形成性に合わせて調整されているため、複雑な形状(車のフードなど)は故障せずにスタンプすることができます。 メタル3D印刷(AM):延性は依然として重要です。特にレーザーパウダーベッドフュージョン(LPBF)からのプリント部品は、細かく、テクスチャーの微細構造、残留応力、および多孔性により延性が低下することを示すことができます。ストレス緩和と高温等吸着プレス(股関節)(しばしば軽い熱処理が続き、延性が回復し、亀裂リスクを減らします。 Ti-6AL-4VやAlSi10Mgなどの合金は、有用なインサービス延性をもたらすことができます。 実世界のアプリケーション用の延性材料 延性は単なるラボメトリックではなく、現実世界の構造、車両、および機器のパフォーマンスに直接影響します。エンジニアリングと設計で重要な理由は次のとおりです。 突然の故障を防ぎ、安全性の向上:延性材料は徐々に失敗します。骨折前にエネルギーを生成および吸収し、目に見える警告を提供し、荷重を再分配できるようにします。建物では、これが構造鋼が好まれる理由です。過負荷のビームは、スナップではなく曲がります。鉄筋コンクリートは同じロジックに従います。埋め込まれた鋼鉄鉄筋は延性を加えて、メンバーが割れずに地震需要の下で曲げることができます。 衝撃のエネルギー吸収(地震およびクラッシュアプリケーション):動的荷重の下で、延性は衝撃エネルギーをプラスチック作業に変えます。鉄骨フレームは、収穫量を介して地震の力を消散させ、自動車は鋼鉄またはアルミニウムの折り畳み帯のゾーンを制御された方法で、キャビンの減速を低下させます。現代の体構造は、強度と延性(DP/トリップ鋼など)とのバランスをとり、航空宇宙AL/TI合金は、鳥のストライキ、加圧、および冷たい耐性のために十分な延性を保持します。 構造の回復力と冗長性:延性システムは、隣接するメンバーにストレスを広めることにより、局所降伏後に負荷を運び続けることができ、進行性崩壊の可能性を減らします。そのため、橋は延性鋼を使用し、パイプラインとケーブルが破裂ではなく地面の動きや過負荷の下で曲がったり、へこみを止めたりするように設計されている理由です。 延性に影響する要因 延性はすべての条件下で固定されていません。これに影響を与える主な要因は次のとおりです。 温度:延性は温度依存性が高くなります。より高い温度が原子の可動性と転位の動きを増加させ、プラスチックの流れを可能にします。低温が動きを制限し、切断型亀裂を促進します。多くのBCC金属(特定の鋼など)は、延性から脆性の遷移温度(DBTT)を持っています。その下では、突然骨折することができます。古典的な例は構造鋼です。周囲温度では曲がる可能性がありますが、非常に低い温度では骨折する可能性があります。したがって、エンジニアはサービス温度をDBTTより上に保持するか、低温グレードを指定します。対照的に、ほとんどのFCC金属(アルミニウム、銅など)は鋭いDBTTを欠いており、寒い場合でも延性があります。 構成と合金:存在する要素とそれらが形成するフェーズは、延性に強く影響します。金、銅、アルミニウムなどの純粋な金属は、通常非常に延性があります。溶質を追加したり、硬い第2フェーズを作成したりすると強度が向上しますが、しばしば転位運動を妨げることで延性を低下させます。炭素鋼では、低炭素グレードは形成可能なままですが、高炭素と工具鋼は和らげない限りはるかに延性が少なくなります。微量不純物も抑制鋼です。硫黄は高温の短さを引き起こす可能性があり、リンは冷たい脆弱性を引き起こす可能性があります。熱処理はバランスを調整します。消光されたマルテンサイトは強いですが、和らげるまで延性が低く、アニーリングは延性を回復します。メタリックメガネは限界を示しています。クリスタルスリップが存在しないため、それらは非常に強いが、通常は脆い。 クリスタル構造とスリップシステム:延性は、脱臼が容易に移動する方法を反映しています。アルミニウム、銅、ニッケル、金などのFCC金属には、多くのアクティブスリップシステムがあり、低温でも延性があり、鋭利な延性から脆性の移行はありません。フェライト鋼、クロム、タングステンなどのBCC金属は、スリップのために熱活性化を必要とし、しばしば延性から脆性への移行を示すため、延性は寒さに低下します。室温でのマグネシウム、亜鉛、チタンなどのHCP金属のスリップシステムは少なくなっています。双子または上昇した温度がなければ、それらは不十分に変形し、亀裂が生じる可能性があります。一般に、利用可能なスリップシステムが多く、固有の延性が高く、低温性能が向上します。 構造の回復力と冗長性:延性システムは、隣接するメンバーにストレスを広めることにより、局所降伏後に負荷を運び続けることができ、進行性崩壊の可能性を減らします。そのため、橋は延性鋼を使用し、パイプラインとケーブルが破裂ではなく地面の動きや過負荷の下で曲がったり、へこみを止めたりするように設計されている理由です。 […]
プラスチック製造は、現代の世界を形作り、生のポリマーを使い捨てパッケージから精密航空宇宙コンポーネントに至るまであらゆるものに変換します。ただし、すべてのプラスチックが平等に作成されるわけではありません。コモディティとエンジニアリングプラスチックは、2つの一般的なタイプの熱可塑性科学物質であり、溶かし、再形成され、繰り返し固化することができます。コモディティプラスチックは、費用対効果の高い大量の日常品の生産用に設計されていますが、エンジニアリングプラスチックは、要求の厳しいアプリケーションに優れたパフォーマンスを提供します。この記事では、それぞれのユニークな特性、メインタイプ、およびアプリケーションについて説明します。
CNC 加工は、コンピュータ制御のツールを使用してさまざまな材料から精密部品を作成する多用途の製造プロセスです。これらの材料はCNC加工の基礎を構成し、加工結果に直接影響を与えます。したがって、多様な CNC 加工材料を認識し、特定の用途に適切な材料を見極める能力を身に付けることが重要です。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español