研磨ブラストは、で広く使用されている費用対効果の高い表面仕上げ技術です製造プロセス。これには、砂、ガラスビーズ、酸化アルミニウム、鉄のショット/グリットなどのさまざまな種類の媒体を推進し、3Dプリントまたはカスタム機械加工部品の表面を滑らか、清掃、または仕上げます。
この記事では、最も一般的なメディアブラスト方法の1つであるビーズブラストに焦点を当てています。ビーズブラストが何であるか、それがどのように機能するか、その長所と短所、実用的なヒントなどを学びます。
ビーズブラストは、小さな球状研磨剤(最も一般的にはガラスまたはセラミックビーズ)が表面に対して高圧で推進されるプロセスです。塗料や錆の厚い層を迅速に除去して粗い仕上げを残す、ジャグ付きまたは角張ったメディアを使用する、より積極的な研磨ブラスト法とは異なり、ビーズブラストは通常、滑らかで均一なサテンのマットな外観を最小限に除去または表面損傷します。
ビーズブラストは、他の研磨ブラスト技術と同様に機能します。チグゴビーズがカスタムパーツを爆破する方法は次のとおりです。
最良の結果を達成するには、最も効果的なツールを使用することが重要です。それでは、最高品質の成果を達成するために必要なツールを見てみましょう。
ビーズブラストメディアはプロセスの中核であり、ガラスビーズは最も一般的なタイプです。鉛フリーのソーダライムグラスから作られたこれらは、化学的に不活性であり、遊離シリカを含まないため、環境に優しく使用しても安全です。適切に使用すると、これらのビーズは最大20〜30回再利用できます。彼らは衝撃に変色をしないため、ガラスビーズは材料のベース色を維持するのに役立ちます。さらに、#40–60、#60–100、#100–170、および#170–325が最も一般的なさまざまなメッシュサイズで利用できます。
穏やかで制御可能な衝撃により、ガラスビーズは、光の表面洗浄、半研磨、さらにはライトショットの覗き見に最適です。ただし、非常に丈夫な材料にはあまり適しておらず、塗料の準備や重い塗料や錆の除去のために表面をエッチングするのに効果が低いです。
スチールショットは、通常、高炭素または合金鋼で作られたもう1つの一般的な爆破メディアです。硬度は40HRCから62HRCまでの範囲で利用でき、数百から数千サイクルで非常に耐久性があり、再利用可能です。粒子サイズは一般に#16から#80メッシュの範囲です。
ヘビーデューティアプリケーションに最適なスチールショットは、鋼や鋳鉄などの工業部品や討論やプロファイルの表面に錆、スケール、および古いコーティングを迅速に除去するために最もよく使用されます。ショットピーニングに使用すると、金属表面に圧縮応力を誘発する可能性があります。金属の疲労を防ぐためにそれらを緩和し、強化します。
セラミックビーズは、通常、酸化アルミニウム(al₂o₃)、酸化ジルコニウム(zro₂)、または両方の焼結コンポジットで作られています。それらは化学的に不活性であり、化学攻撃に抵抗します。それらの硬さは、ガラスビーズとスチールショットの間にあり、50〜150サイクルで再利用できます。優れた球形で、それらは厳密に制御された表面仕上げを必要とするアプリケーションに適しています。
アクリル、ナイロン、ポリエステルなど、複数の種類のプラスチックブラストメディアがあります。それらは他のほとんどの研磨剤よりもはるかに優しいもので、非常に再利用可能で、軽量です。これにより、基質を引っ掻いたり変形させたりせずに、柔らかく脆い材料、繊細な部品の表面洗浄、非難、および前処理に適しています。
ビーズブラストキャビネットは、爆破プロセスが行われる場所です(大部分または大量の部品の場合、これは多くの場合、専用の爆風部屋で発生します)。
機器を選択するときは、一貫したブラスト結果を提供し、オペレーターの安全性を保証する高品質のキャビネットを選択します。優れたビーズブラストキャビネットには、次の重要な機能を含める必要があります。
ビーズブラストキャビネットの場合、頑丈な構造が重要です。ヘビーゲージスチールは耐久性があり、時間の経過とともに激しい爆破圧力の下でもその強度を維持するため、素晴らしい選択です。同様に重要なのは、脚やフレームのいずれであっても、爆発中に生成された振動を減衰させながら、キャビネット、メディア、ワークピースの重量を運ぶ固体サポート構造です。サポートが不十分な場合、ぐらつき、摩耗の増加、安全上の危険につながる可能性があります。
適切に設計されたキャビネットには、ほこり、破片、研磨剤が逃げるのを防ぐ気密シールが必要で、それによりオペレーターと周囲のワークスペースが保護されます。また、空中粒子を迅速に除去し、視聴ウィンドウを透明に保ち、ドアが開くたびに爆破を無効にする安全インターロックを組み込んだ堅牢な塵の収集と抽出システムを含める必要があります。
ブラストプロセスのリアルタイム監視には、明確でかなりの耐久性のある視聴ウィンドウが不可欠です。ただし、時間の経過とともに曇り、引っ掻き、または穴を開ける傾向があります。これを克服するには、透明度を維持するために、交換可能な保護フィルムを使用する必要があります。キャビネット内の適切な照明も重要です。照明は、ワークのすべての詳細を強調するのに十分な明るくなければなりませんが、まぶしさや影を避けるために戦略的に位置しています。
爆破手袋は通常、キャビネットに統合されます。それらは、爆破プロセス中に高速研磨媒体と鋭いエッジによって引き起こされる擦り傷からあなたの手を守ります。彼らはまた、爆破することによって生成される振動を減衰させ、長期使用よりも手の疲労を減らします。さらに、テクスチャードデザインは強力なグリップを提供し、コントロールと精度の両方を強化します。
ビーズブラスターガンは、画家にとって絵筆が不可欠であるように、もう1つの重要なコンポーネントです。アプリケーションに応じて、いくつかのタイプから選択できます。高効率とディープクリーニングのための圧力爆破銃、またはより軽い、より正確な作業のための吸引/重力供給銃。
どのタイプを選択しても、耐久性、オペレーターの快適性、安全性は重要な要件です。ビーズブラストガンは、手術モードと足操作モデルに操作モードによって分類されます。手術用の銃は、精密な作業には非常に貴重ですが、フット式の銃は、長時間の操作または両手を使用するためにワークを操作する必要があるタスクに適しています。
その有用性と汎用性にもかかわらず、ビーズブラストにはいくつかの欠点があります。次に、プロジェクトに使用することの利点と短所を要約しましょう。
希望する表面仕上げを実現するために、考慮すべき実用的なヒントをいくつか紹介します。
表面に残っている汚れやコーティングは、爆破メディアに干渉し、不均一な仕上げにつながります。たとえば、残留油やグリースにより、メディアが固執し、斑点が作成されたり、研磨剤が一部の領域に到達しないようにします。同様に、ブラスト中に基板に埋め込まれないように、ゆるい破片をスクラブまたは吹き飛ばします。
ビーズブラスト、特にガラスビーズのような細かいメディアを使用して、重い錆、ミルスケール、または厚い塗料を切断するのに効果的ではありません。部品に重い腐食または丈夫なコーティングが示されている場合は、ビーズブラストの前に、より積極的な方法または媒体(例えば、酸化アルミニウムグリット、ガーネット、またはサンドペーパーステップ)を使用して最初に除去します。
ビーズブラストメディアがどれほど素晴らしいかに関係なく、プロセスは必然的に最終的な粗さに影響を与える小さな表面の不規則性を導入します。非常にタイトで達成します表面の粗さ要件は実際には困難な場合があります。ほとんどのアプリケーションでは、32μinra以下の表面粗さを指定することをお勧めします。
研磨剤にさらされるべきではない領域をマスクします。これには、ねじ穴またはシャフト、耐電子、洗練または高い耐性表面、シールエリアなどが含まれます。適切なマスキング材料を使用します。一般的な選択には、高強度テープ(ダクトテープ、ゴリラテープなど)、穴のゴムまたはシリコンプラグ、糸のキャップのネジ、または目的の爆風マスキングフィルムが含まれます。マスクが爆風の影響に耐えることができることを確認してください:厚いゴムまたはビニールテープはよく持ち上げられ、薄い塗料のマスキングテープは重い爆破下で引き裂かれる可能性があります。
繊細または精密な表面の場合は、穏やかな接着層(青い画家のテープなど)から始めて、その上に強いテープを塗ります。そうすれば、外側のテープを取り外すと、残留物を離れたり、下にある表面を持ち上げたりすることなく、きれいに剥がれます。
より硬い金属または頑丈な洗浄にはより高い圧力が必要ですが、より柔らかい材料または細かい仕上げには低い圧力が必要です。たとえば、繊細なアルミニウムまたはプラスチック部品は30〜40psiで爆破することができますが、鋼からミルスケールを除去するには80+PSIが必要になる場合があります。まだジョブを効果的に完了させる最低の圧力の側では常に誤りを犯してください。
実際には、ビーズブラストプロセスは通常、アプリケーションに応じて30〜100psi(2〜7bar)の間で実行されます。細かいガラスビーズ仕上げは、穏やかなサテンマット仕上げを実現するために40〜60psiで行われます。ガイドラインとして、50psiは、ビーズを粉砕することなくきれいなポリッシュを手に入れるためのガラスビーズブラストの良い出発点です。より高い圧力(80〜100psi)は、より丈夫な媒体を使用したより積極的な爆破またはコーティングの剥離に使用されます。疑わしい場合は、希望する仕上げを達成するまで、低く開始し、圧力を徐々に上げます。
ノズルを一貫したスタンドオフ距離に保ちます。これは、同様に6〜12インチ(15〜30 cm)です。ノズルを近くに保持しすぎて、爆風が小さな領域に集中し、表面を掘るか、表面を掘り下げることができます。遠すぎてメディアは有効性を失い、より軽い仕上げを与えます。
表面に対するノズル角も一定のままでなければなりません。角度の変動は、粗さや明るさに違いをもたらす可能性があります。ほとんどの高品質の仕上げには、ほぼ総節(90°)の角度が推奨されます。
リサイクル可能なシステムでは、定期的にメディアをふるいにかけてほこりや壊れた粒子を除去します。多くのキャビネットには、このためのサイクロン分離器が組み込まれています。細かいほこりは、爆破の有効性を低下させるだけでなく、ワークピースに再び再配置する可能性があります。メディアを清潔に保つことで、すべての研磨粒子が有用な作業を行うことが保証されます。
研磨メディアが特定のポイントを過ぎて故障したら、新しいまたはフィルター処理されたメディアに交換または更新して、仕上げの品質と処理速度を維持します。
メディアの選択は、希望する仕上げを達成するために重要です。以下のブラストメディア選択チャートは、プロジェクトに最適なタイプを選択するのに役立つ一般ガイドとして提供されています。ただし、ブラスト圧力、ワークピースの硬度、メディアの形状、オペレーターの手法などの要因は、チャートが示すものを超えてメディアのパフォーマンスに影響を与える可能性があります。
特性 /メディア | ガラスビーズ | 鋼鉄 ショット | セラミックショット | 酸化アルミニウム | プラスチックメディア | ガーネット |
クリーニング /削除 | ✔✔️ | ✔✔️ | ✔✔️ | ✔✔️ | ✔✔️ | ✔✔️ |
のぞき | ✔✔️ | ✔✔️ | ✔✔️ | - | ✔✔️(光) | - |
表面エッチング | - | - | - | ✔✔️ | - | ✔✔️ |
リサイクル性 /メディアライフ | ミディアム (20〜30サイクル) | 非常に高い (> 500サイクル) | high (> 150サイクル) | Med-High (50-100サイクル) | ミディアム (20-40サイクル) | Med – High (50〜80サイクル) |
材料除去の確率 | 非常に低い | 高い | 医療高 | 中くらい | 非常に低い | 中くらい |
Mohsの硬度 | 5.5 | 6-7 | 7 | 9 | 2-3 | 7-8 |
典型的な爆風圧(psi) | 20-55 | 20-90 | 20-90 | 20-90 | 20-60 | 30-80 |
メディアの形 | ⬤ | ⬤ | ⬤ | ▲ | ▲ | ▲ |
✔✔§=適切な;⬤ =球状;▲=角度 |
ビーズブラストは、さまざまな材料でうまく機能し、幅広い製造プロセスをサポートする多目的な表面仕上げ技術です。費用対効果が高く、環境にやさしく、部分的に磨かれたサテンのような仕上げを達成するのに理想的です。
チグゴでは、包括的なものを提供しています表面仕上げサービス競争力のある価格で製品の品質と外観を向上させるため。今日お問い合わせください専門家のアドバイスや見積もりについては、次のプロジェクトを成功させましょう!
ビーズブラストとサンドブラストの違いは何ですか?
サンドブラストとビーズブラストは、どちらも研磨型ブラスト技術です。それらの選択は、材料と望ましい効果に依存します。それらの間の重要な違いは次のとおりです。
Glass Bead Blastingは安全ですか?
特に、シリカ砂を使用する研磨型ブラスト技術と比較すると、ガラスビーズブラストは一般に安全であると考えられています。ただし、Glass Bead Blastingはより安全な代替品ですが、オペレーターの保護を確保するために、個人用保護具(PPE)や適切な換気などの適切な安全対策が必要です。
究極の引張強度(UTS)は、材料が壊れる前に耐えることができる最大応力の尺度です。 UTSは通常、引張テストを実行し、エンジニアリングストレス対ひずみ曲線を記録することによって見つかります。集中的な特性として、UTSは緊張下の材料の性能を比較するために不可欠です。エンジニアが、故障せずに引張荷重に抵抗する必要がある構造とコンポーネントの適切な材料を選択するのに役立ちます。
この記事では、一般的な間違いを軽減し、製品の品質を向上させ、高価な金型の変更と再加工を避けることでコストを削減するのに役立つ射出成形のための実用的なデザインのヒントを提供します。
延性は、物質科学の基本的な概念であり、一部の材料(金属など)がストレスの下で大幅に曲がったり伸ばすことができるのかを説明しますが、他の材料(ガラスなど)が突然スナップします。この記事では、延性とは何か、それがどのように測定され、なぜ重要なのか、どの要因がそれに影響するかを説明します。 延性の定義 延性とは、骨折前に張力で塑性変形を受ける材料の能力です。簡単に言えば、延性材料は、スナップせずに長い道のりを伸ばすことができます。対照的に、ガラスのような脆い材料は、ほとんど変形がほとんどない後、割れたり粉砕する傾向があります。材料科学では、塑性変形は形状の永続的な変化です。これは弾性変形とは異なり、荷重が除去されると回復可能です。延性は可塑性と密接に関連していますが、より具体的です。可塑性は、任意のモード(張力、圧縮、またはせん断)で永続的な変形の一般的な能力ですが、延性は張力の能力を指します。 原子の観点から見ると、多くの金属の高い延性は、非方向性金属結合と、転位を移動できるスリップシステムの利用可能性に由来しています。ストレスが加えられると、転位グライドは金属製の結晶がプラスチックのひずみに対応できるため、金属は骨折ではなく曲がったり伸びたりすることがよくあります。対照的に、セラミックとガラスには方向性のあるイオンまたは共有結合があり、非常に限られたスリップがあるため、緊張の下でかなりのプラスチックの流れの前に割れる傾向があります。ただし、すべての金属が室温で延性しているわけではありません(たとえば、一部のBCC金属、高炭素鋼、金属グラスは比較的脆くなる可能性があります)、およびメタリックスタイルの延性ではないガラス遷移温度を上回る粘性流量によって主に加熱されたガラス曲げが加熱されます。 延性の測定 引張試験は延性を定量化する最も一般的な方法です。標本は骨折に一軸の張力で負荷をかけ、延性は破損時の伸長と面積の減少率として報告されます。 休憩時の伸び率(A%) 破壊時のゲージ長の増加率:A%=(LF -L0)/L0×100%、L0は元のゲージ長、LFは破壊時の最終長さです。 A%が高いほど、引張延性が大きくなることを示します。 面積の減少率(RA%) 破壊位置での断面の割合の減少:RA%=(A0 - AF)/A0×100%。ここで、A0は元の面積であり、AFはブレークの最小面積です。大規模なRA%は、顕著なネッキングと強力なセブキング後延性を反映しています。 (ゲージの長さに敏感ではありません。非常に薄いシートには理想的ではありません。) 両方の測定値は、通常、引張試験の一部として報告されます。たとえば、鋼のサンプルは、たとえば20%の伸びと破損時の面積の60%の減少を持っていると説明される場合があります。これは、延性挙動を示しています。対照的に、脆性セラミックは、伸びが1%しかなく、本質的に0%の面積の減少を示す場合があります(ほぼ薄くなることなく壊れます)。伸びと面積の減少が大きいほど、材料の延性が高くなります。 延性を視覚化する別の方法は、引張試験から得られたグラフであるストレス - ひずみ曲線です。ストレス(単位面積あたりの力)は、ひずみ(相対変形)に対してプロットされます。この曲線のキーポイントには次のものがあります。 ヤングモジュラス(E):線形弾性領域の勾配。剛性の尺度。 降伏強度(σᵧ):塑性変形の開始(多くの場合、シャープな降伏点が存在しない場合、0.2%のオフセット法で定義されます)。 究極の引張強度(UTS):最大のエンジニアリング応力。標本の首を超えて。骨折は、通常、エンジニアリングストレスが低い場合に発生します。 骨折ポイント:標本が最終的に壊れる場所。 延性材料(青)の代表的な応力 - ひずみ曲線(赤) 延性材料の曲線は、生成後に長いプラスチック領域を示し、骨折前に大きなひずみを維持できることを示しています。対照的に、脆性材料の曲線は降伏点の近くで終わり、プラスチック領域はほとんどまたはまったくありません。要約すると、エンジニアリング応力 - 伸縮グラフ(指定されたゲージの長さの場合)では、延性が骨折する総ひずみによって延性が反映されます。これは、乳酸材料の長いもので、脆性材料の略です。ただし、見かけの骨折ひずみは選択したゲージの長さに依存し、ネッキングが開始すると変形が局所化されるため、エンジニアリング曲線は延性後延性の直接的な尺度ではありません。そのため、仕様は通常、面積の割合(RA%)の割合とともに、破損時の伸び(A%)を報告します。 延性と柔軟性の違いは何ですか? 延性は、壊れずに緊張を伸ばす材料の能力です。引張試験からの面積の伸長率または縮小で定量化します。金属をワイヤーに引き込むことができる場合、延性があります。閉鎖性とは、亀裂なしで圧縮で変形する材料である材料の能力です。曲げ/平坦化/カッピングテスト、またはどれだけの厚さの減少が許容できるかで判断します。 実際には、金、銅、アルミニウムは両方とも非常に延性があり、順応性があります(ワイヤーとシートに最適です)。鉛は非常に順応性がありますが、適度に延性しかありません(シートに転がるのは簡単で、細いワイヤーのように貧弱です)。マグネシウムは室温で順応性が制限されていますが、亜鉛は温めたときに順応性が高くなります。製造用に、描画、深いストレッチ、プル支配的な機能のための延性合金を選択します。圧縮が支配する場所でローリング、スタンピング、および鍛造のために、順応性合金を選択します。温度と結晶構造は両方の特性をシフトします。クイックルール:ダクタリティ=張力/ワイヤー;閉鎖性=圧縮/シート。 なぜ延性が重要なのか 延性は、製造可能性とサービス内の安全性の両方の背後にある静かな主力です。工場では、金属をシートに丸め、ワイヤーに引き込んで、割れずに鍛造できます。フィールドでは、コンポーネントがエネルギーを吸収し、ストレスを再分配し、故障前に警告を提供できるようにします。 製造用の延性材料 一般に、延性が高いということは、材料が実行可能であることを意味します。亀裂なしに、鍛造、巻き、巻き、描画、またはさまざまな形に押し出ることができます。低延性(brittleness)は、材料を変形させるのが難しく、鋳造や機械加工などのプロセスに適していることを意味します(材料が形状を幅広く変化させない場合)。 鍛造とローリング:これらのプロセスは、固体金属を形状に変形させます - ハンマー(鍛造)またはロール間の通過(ローリング)。延性金属は、関与する大きなプラスチック株に耐えます。実際には、鋼のスラブ/ブルームはシート、プレート、およびIビームなどの構造形状にホットロールされ、アルミニウムはコンポーネントに容易に鍛造されます。対照的に、鋳鉄のような脆い合金は、重い変形の下で割れる傾向があるため、通常、ネットの形に鋳造することで形作られます。 押し出しとワイヤー/バーの描画:押し出しは、ダイを通して金属を押して、長く一定の交差セクション製品を作る。ワイヤー/バーの描画は、直径を減らすためにダイを通して固体ストックを引っ張ります。どちらもプラスチックの流れに依存しています。アルミニウム、銅、低炭素鋼などの延性合金は、チューブとプロファイル(窓枠、ヒートシンクセクションなど)に押し出され、細かい電気線に引き込まれます。加工温度で十分な延性のない材料は、ダイをチェックまたは亀裂する傾向があるため、ガラスまたはセラミックが固体状態に押し出されたり描かれたりしないのです。代わりに繊維が溶けて描かれています。 ディープドローイング:深い描画は、パンチでシートをダイに強制することにより、軸対称カップと缶を形成します。フランジは内側に餌を与え、壁はわずかに薄くなります。適切な延性は、分割やしわを防ぎます。アルミニウムの飲料canボディは古典的な例です。 板金の曲げとスタンピング:ボディパネルとエンクロージャーの一般的な曲げとスタンピングは、シートがダイで伸びているときにエッジのひび割れやオレンジピールを避けるために延性を必要とします。鋼鉄とアルミニウムのグレードは、形成性に合わせて調整されているため、複雑な形状(車のフードなど)は故障せずにスタンプすることができます。 メタル3D印刷(AM):延性は依然として重要です。特にレーザーパウダーベッドフュージョン(LPBF)からのプリント部品は、細かく、テクスチャーの微細構造、残留応力、および多孔性により延性が低下することを示すことができます。ストレス緩和と高温等吸着プレス(股関節)(しばしば軽い熱処理が続き、延性が回復し、亀裂リスクを減らします。 Ti-6AL-4VやAlSi10Mgなどの合金は、有用なインサービス延性をもたらすことができます。 実世界のアプリケーション用の延性材料 延性は単なるラボメトリックではなく、現実世界の構造、車両、および機器のパフォーマンスに直接影響します。エンジニアリングと設計で重要な理由は次のとおりです。 突然の故障を防ぎ、安全性の向上:延性材料は徐々に失敗します。骨折前にエネルギーを生成および吸収し、目に見える警告を提供し、荷重を再分配できるようにします。建物では、これが構造鋼が好まれる理由です。過負荷のビームは、スナップではなく曲がります。鉄筋コンクリートは同じロジックに従います。埋め込まれた鋼鉄鉄筋は延性を加えて、メンバーが割れずに地震需要の下で曲げることができます。 衝撃のエネルギー吸収(地震およびクラッシュアプリケーション):動的荷重の下で、延性は衝撃エネルギーをプラスチック作業に変えます。鉄骨フレームは、収穫量を介して地震の力を消散させ、自動車は鋼鉄またはアルミニウムの折り畳み帯のゾーンを制御された方法で、キャビンの減速を低下させます。現代の体構造は、強度と延性(DP/トリップ鋼など)とのバランスをとり、航空宇宙AL/TI合金は、鳥のストライキ、加圧、および冷たい耐性のために十分な延性を保持します。 構造の回復力と冗長性:延性システムは、隣接するメンバーにストレスを広めることにより、局所降伏後に負荷を運び続けることができ、進行性崩壊の可能性を減らします。そのため、橋は延性鋼を使用し、パイプラインとケーブルが破裂ではなく地面の動きや過負荷の下で曲がったり、へこみを止めたりするように設計されている理由です。 延性に影響する要因 延性はすべての条件下で固定されていません。これに影響を与える主な要因は次のとおりです。 温度:延性は温度依存性が高くなります。より高い温度が原子の可動性と転位の動きを増加させ、プラスチックの流れを可能にします。低温が動きを制限し、切断型亀裂を促進します。多くのBCC金属(特定の鋼など)は、延性から脆性の遷移温度(DBTT)を持っています。その下では、突然骨折することができます。古典的な例は構造鋼です。周囲温度では曲がる可能性がありますが、非常に低い温度では骨折する可能性があります。したがって、エンジニアはサービス温度をDBTTより上に保持するか、低温グレードを指定します。対照的に、ほとんどのFCC金属(アルミニウム、銅など)は鋭いDBTTを欠いており、寒い場合でも延性があります。 構成と合金:存在する要素とそれらが形成するフェーズは、延性に強く影響します。金、銅、アルミニウムなどの純粋な金属は、通常非常に延性があります。溶質を追加したり、硬い第2フェーズを作成したりすると強度が向上しますが、しばしば転位運動を妨げることで延性を低下させます。炭素鋼では、低炭素グレードは形成可能なままですが、高炭素と工具鋼は和らげない限りはるかに延性が少なくなります。微量不純物も抑制鋼です。硫黄は高温の短さを引き起こす可能性があり、リンは冷たい脆弱性を引き起こす可能性があります。熱処理はバランスを調整します。消光されたマルテンサイトは強いですが、和らげるまで延性が低く、アニーリングは延性を回復します。メタリックメガネは限界を示しています。クリスタルスリップが存在しないため、それらは非常に強いが、通常は脆い。 クリスタル構造とスリップシステム:延性は、脱臼が容易に移動する方法を反映しています。アルミニウム、銅、ニッケル、金などのFCC金属には、多くのアクティブスリップシステムがあり、低温でも延性があり、鋭利な延性から脆性の移行はありません。フェライト鋼、クロム、タングステンなどのBCC金属は、スリップのために熱活性化を必要とし、しばしば延性から脆性への移行を示すため、延性は寒さに低下します。室温でのマグネシウム、亜鉛、チタンなどのHCP金属のスリップシステムは少なくなっています。双子または上昇した温度がなければ、それらは不十分に変形し、亀裂が生じる可能性があります。一般に、利用可能なスリップシステムが多く、固有の延性が高く、低温性能が向上します。 構造の回復力と冗長性:延性システムは、隣接するメンバーにストレスを広めることにより、局所降伏後に負荷を運び続けることができ、進行性崩壊の可能性を減らします。そのため、橋は延性鋼を使用し、パイプラインとケーブルが破裂ではなく地面の動きや過負荷の下で曲がったり、へこみを止めたりするように設計されている理由です。 […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español