陽極酸化とも呼ばれる陽極酸化は、金属表面に装飾的で耐食性の酸化物層を作成するために使用される電気化学プロセスです。マグネシウムやチタンなどのいくつかの非鉄金属は陽極酸化できますが、アルミニウムはこのプロセスに特に適しています。実際、アルミニウムの陽極酸化処理は、材料の耐久性と外観の両方を大幅に向上させるため、今日広く使用されています。
この記事では、アルミニウムのアルマイト処理に焦点を当て、アルマイト処理の詳細を説明し、アルミニウムのアルマイト処理の種類、利点、用途、設計のヒントを説明します。

アルミニウムの陽極酸化は、希硫酸溶液中で最も一般的に行われる電解プロセスです。このプロセス中に、アルミニウム部品に電流が流れ、表面のアルミニウム原子が電子を失い、正に帯電したアルミニウムイオン (Al3+) になります。これらのアルミニウム イオンは電解液中の水分子 (H2O) と反応し、金属の自然に発生する酸化物層よりもはるかに強力で耐食性が高い耐久性のある酸化アルミニウム層を形成します。
この酸化アルミニウムは、ペイントやメッキのように表面に塗布されるのではなく、その下にあるアルミニウム基板と完全に一体化しているため、欠けたり剥がれたりすることはありません。さらに、酸化物層は高度に規則正しい多孔質構造をしているため、着色や封止などの二次プロセスが可能です。これらの処理により、陽極酸化表面の耐食性、耐久性、美的柔軟性がさらに向上し、金属仕上げを維持しながらアルミニウムにさまざまな色を採用できるようになり、特に消費者製品、建築、デザインにおける陽極酸化アルミニウムの用途の範囲が広がります。
陽極酸化プロセスは、アルミニウム部品を徹底的に洗浄して、グリース、油、汚れ、その他の汚染物質を除去することから始まります。これは、アルミニウムをアルカリまたは酸ベースの洗剤浴に浸すことで実現できます。このステップにより、均一な陽極酸化に不可欠な、きれいで活性な表面が確保されます。
次に、アルミニウム表面は、化学的または機械的プロセスを通じて陽極酸化処理のために準備されます。一般的な化学的前処理には、 水酸化ナトリウムなどのエッチング液を使用して表面の凹凸を除去するエッチングと、硝酸または硫酸を含む溶液を使用するデスマットが含まれます。アルミニウム部品からスマット(エッチング後に表面に残る不溶性の合金元素または酸化物の残留物)を除去するための酸。
必要に応じて、 研磨研磨、サンドブラスト、ショットピーニングなどの技術を使用して、 表面をさらに滑らかにしたり質感を整えたりする機械的前処理も適用される場合があります。

さらに洗浄した後、洗浄および前処理されたアルミニウム部品を陽極酸化処理タンクに移し、電解液 (通常は硫酸またはクロム酸) に浸漬します。次に、アルミニウム部分が陽極として機能し (したがって「陽極酸化」という用語)、ステンレス鋼や鉛などの不活性材料が陰極として機能する状態で、溶液に電流が流されます。
この電流により、アルミニウム原子は電子を失ってアルミニウム イオンになり、電解液中の水分子と反応して酸化アルミニウム (Al₂O₃) の層を形成し、部品の表面に堆積し、保護的で耐久性のあるコーティングを形成します。各電極での反応を以下にまとめます。
| 陽極での反応(アルミニウムの酸化) | Al → Al3+ + 3e- 2Al3++3H2O→Al2O3+6H+ |
| Cでの反応アソード(水素イオンの低減) | 6H++ 6e-→3H2 |
| 全体的な反応 | 2Al + 3H2O → Al2O3 + 3H2 |
電気分解段階では、電解液浴の化学組成に応じて、2 つの異なるタイプの酸化膜が形成されることがあります。

バリア酸化膜:
ホウ酸アンモニウム、リン酸アンモニウム、または酒石酸アンモニウムの組成物を含む溶液など、中性または弱アルカリ性の溶液中で陽極酸化が行われると、バリア酸化膜が形成されます。これらの溶液では、酸化アルミニウムは不溶性のままであり、アルミニウム基板に直接結合する、薄く非多孔質の連続酸化物層の形成が可能になります。このバリア層は高密度であり、保護コーティングとして機能し、さらなる酸化や腐食を防ぎます。
多孔質酸化膜:
硫酸、リン酸、クロム酸などの希酸性溶液中で陽極酸化を行う場合、電流によってアルミニウム表面に酸化物層が形成されます。同時に、酸性電解質は、特に露出した領域または弱い領域で酸化物を部分的に溶解します。酸化物の形成と溶解の間のこの動的なバランスにより、酸化物の一部が保持されて安定した膜が形成されますが、他の部分は溶解して規則的な多孔質構造が形成されます。
多孔質酸化物層の厚さは、印加電圧、電解液温度、陽極酸化時間などの要因に影響されます。電圧が高く、持続時間が長いと、膜が厚くなります。さらに、細孔のサイズと密度は、酸の濃度と電解質の温度に依存します。

着色仕上げが必要な場合はいくつかの方法がありますが、最も一般的なのは染色 (浸漬着色) と電解着色です。
染色では、陽極酸化された部分を有機染料を含む浴に浸します。染料は酸化物層の表面細孔に浸透し、内部に付着します。最終的な色は、使用する特定の染料だけでなく、その濃度や分子構造などの要因によって決まります。この方法はコスト効率が高く、アルミニウム部品にさまざまな色を適用することができます。ただし、得られる着色フィルムは紫外線に対する耐性が低いため、日光にさらされると時間の経過とともに色が薄くなる可能性があります。
電解着色では、金属塩(錫、ニッケル、コバルトなど)を入れた浴にアルマイト部分を浸し、電流を流します。これにより、金属イオンが酸化層の細孔に沈着し、陽極酸化表面に独特の色が生成されます。最終的な色とその品質は、使用される金属の種類と細孔内の金属堆積物の濃度によって異なります。
アルミニウムを何色に陽極酸化できますか?
ほとんどの色は、上記の方法に加えて、積分色や干渉色などの追加のテクニックを使用して実現できます。
可能な陽極酸化色には、黒、青、ブルーグレー、ブラウン、ゴールド、グレー、グリーン、オリーブドラブ、ピンク、レッド、バイオレット、イエローが含まれます。無機金属塩を使用した電解着色などの一部の方法は、耐紫外線性の色を生成するため、色の安定性が重要な屋外用途に最適です。
干渉着色などの特定のプロセスでは、陽極酸化層内の光学干渉効果によって色が生成され、その結果、見る角度に応じて変化する独特の色合いが得られます。他の方法は光の散乱に依存し、光が表面とどのように相互作用して特定の色合いを生成するかに影響を与えます。
さらに、陽極酸化アルミニウムは、ペイント、スクリーン印刷、反射材 (道路標識に使用されるものなど) の受け入れに優れています。この多用途性により、純白や高反射表面など、陽極酸化だけでは不可能な色や仕上げを実現できます。
陽極酸化プロセスの最終ステップはシーリングです。これにより、陽極酸化層の細孔が閉じられ、さらなる化学反応が防止され、色が固定されます。これは通常、部品を沸騰した脱イオン水の浴槽に浸すことによって行われますが、スチーム シールやケミカル シールなどの他の方法を使用することもできます。封止されると、陽極酸化層は安定し、部品の耐摩耗性と耐腐食性が強化されます。酸化皮膜はデリケートなため、仕上がりの品質と耐久性を確保するために、着色後は速やかにシーリングを行う必要があります。

MIL-PRF-8625 (MIL-A-8625 に置き換わる) によると、アルミニウムの主要な陽極酸化プロセスは 3 つあり、それぞれが特定の用途向けに設計され、外観、耐久性、耐食性の点で独自の特性を提供します。
クロム酸陽極酸化は、最も古い陽極酸化方法であり、電解質としてクロム酸を使用して、アルミニウム表面に通常厚さ 0.5 ~ 2.5 ミクロンの薄い酸化膜を作成します。タイプ I は 3 つのアルマイト処理タイプの中で最も薄いにもかかわらず、裸のアルミニウムに比べて耐食性が大幅に向上します。結果として生じる薄い酸化物層の寸法変化は無視できる程度であるため、厳しい公差が必要なコンポーネントに最適です。また、軍事および航空宇宙用途に望ましい、無反射のマット仕上げも可能です。さらに、薄いフィルムは厚いタイプ III ハードコート陽極酸化層よりも柔軟性があり、応力や曲げに対する耐性が向上します。
しかし、タイプ I 陽極酸化処理には、クロム酸が有毒で発がん性があるため、環境上の懸念があります。したがって、このプロセスを実行する施設は、クロム酸副生成物を管理するために特殊な廃水処理システムを導入する必要があります。さらに、酸化物層の厚さが限られているため、染料を吸収する能力が低下し、黒く染めた場合でもフィルムが灰色っぽく見えることがよくあります。
硫酸陽極酸化は最も広く使用されている陽極酸化方法であり、クロム酸の代わりに硫酸を電解液として使用します。このプロセスでは通常、2.5 ~ 25 ミクロンの厚い酸化物層が生成され、タイプ I の陽極酸化部品と比較して優れた耐摩耗性と耐食性が得られ、一般的により硬いです。
酸化物層の厚さと多孔性の増大により、着色染料、塗料、接着剤を効果的に吸収できるため、装飾用途に最適です。さらに、このタイプの陽極酸化処理は、化学薬品のコストが低く、エネルギー消費が削減され、廃棄物処理プロセスが簡単であるため、タイプ I よりも費用対効果が高くなります。
硬質陽極酸化処理は、タイプ II 陽極酸化処理と同様に硫酸を使用しますが、はるかに低い温度、より高い電圧、および増加した電流密度で動作します。このプロセスにより、厚さ 25 ミクロンを超える酸化物層が形成され、非常に硬く、多くの場合工具鋼の硬度に達します。その結果、タイプ III 陽極酸化処理は摩耗に対する優れた保護を提供し、摩耗や損傷が激しい産業環境や機械環境で使用される部品に最適です。
ただし、得られるフィルムは通常暗く、染色されずに残されるか、黒く着色される場合があります。タイプ III の陽極酸化はタイプ II と同様に環境に優しいですが、厳しいプロセス条件が必要なため、よりコストが高くなります。
どのタイプの陽極酸化処理が最適ですか?
以下の表は、3 種類の陽極酸化処理の主な特徴をまとめたもので、最も一般的な用途を示しています。これは、ニーズに最適な陽極酸化処理の種類を選択するのに役立ちます。
| プロパティ | タイプI (クロム酸アルマイト) | タイプⅡ (硫酸アルマイト) | タイプⅢ (硬質アルマイト処理) |
| コーティングの厚さ | 0.5~2.5 ミクロン | 2.5~25ミクロン | >25ミクロン |
| 耐食性 | 良い | より良い | 素晴らしい |
| 耐摩耗性 | 貧しい | 適度 | 素晴らしい |
| 気孔率 | 低い | 適度 | 低い |
| 外観 | マットグレーまたはナチュラルカラー | 透明または染色 | ハードクリアまたはハードブラック |
| 環境に優しい | いいえ | はい | はい |
| 料金 | 中程度から高度。クロム酸の安全対策により上昇 | 低い;最も経済的な陽極酸化プロセス | 高い;厳しいプロセス条件とエネルギー要件のため |
| アプリケーション | - 厳しい寸法公差が必要な部品 - 接着や塗装などのさらなる加工が必要 | - 表面硬度と美観のバランス - 鮮やかでカスタマイズ可能な色と耐久性が必要なプロジェクト | - 摩耗の激しい環境 - 過酷な条件で使用される部品 |
アルミニウムを陽極酸化することのいくつかの利点についてはすでに述べました。ここで、これらの利点を議論のためにまとめて、そこから生じる特定のアプリケーションを検討してみましょう。
陽極酸化層は、湿気、塩分、汚染物質などの環境要因に対する保護バリアとして機能します。これは、厳しい天候や腐食環境にさらされることが一般的な建築業界や海洋産業で特に有益です。一般的な用途には、建物のファサード、屋根、窓枠、海洋機器などがあります。
酸化アルミニウム層は未加工のアルミニウムよりもはるかに硬く、部品が傷、摩耗、その他の摩耗に耐えるのに役立ちます。これにより、陽極酸化アルミニウムは、調理器具、電子機器、自動車部品など、頻繁に使用される製品や頻繁に使用される製品に最適です。ホイール、トリム、エンジンコンポーネントなど。
陽極酸化層の多孔質の性質により、染料を効率的に吸収できるため、幅広い色のオプションが得られます。これにより、デザイナーは機能と視覚的な魅力を統合し、高いパフォーマンスと美的柔軟性の両方を提供できるようになります。陽極酸化アルミニウムはスマートフォン、ラップトップ、建物の外装などの製品に使用されており、家電製品や建築などの業界で特に高く評価されています。
陽極酸化皮膜は、裸のアルミニウムと比較して表面放射率を一桁増加させ、放射熱伝達を改善することでヒートシンクの効果を高めます。これは、エンジン部品や調理器具など、耐熱性が必要な用途に有利です。さらに、陽極酸化処理により効果的な電気絶縁が得られるため、エレクトロニクス産業で特に役立ちます。

陽極酸化された表面は、塗料、シーラント、接着剤の優れたベースとなり、製品全体の寿命と耐久性が向上します。この機能は、過酷な条件に耐える必要があるコーティングや仕上げに信頼性の高い接着力が不可欠である自動車産業や航空宇宙産業で特に価値があります。陽極酸化アルミニウムは建築用途でも人気があり、建物の外装や構造要素の仕上げを長持ちさせます。
陽極酸化処理は、他の金属仕上げ技術に比べて比較的環境に優しいプロセスです。有害な廃棄物が最小限に抑えられ、陽極酸化層は無毒でリサイクル可能であるため、調理器具や食品加工機器にとって安全な選択肢となります。業界がより環境に優しい製造に移行するにつれて、陽極酸化アルミニウムはその持続可能性から人気が高まっており、特に軽量でエネルギー効率の高い材料の需要が高まっている輸送などの分野で人気が高まっています。
陽極酸化は比較的簡単なプロセスであり、多くの部品製造業界で一般的な選択肢となっています。ただし、最良の結果を確実に得るには、陽極酸化処理用の部品を設計するときにいくつかの要素を考慮する必要があります。ここでは、重要なヒントと考慮事項をいくつか示します。
アルミニウム合金が異なれば、陽極酸化プロセスに対する反応も異なります。たとえば、2000 シリーズや一部の 7000 シリーズなど、銅含有量が 2% 以上の合金は、MIL スペック タイプ III コーティングの下でテストすると、一般に耐摩耗性が低くなります。これは、これらの合金のタイプ III ハードコートは 6061 アルミニウムほど耐摩耗性がない可能性があることを意味します。使用している合金について懸念がある場合は、ベンダーに相談するのが最善です。
すべてのタイプの陽極酸化処理、特にタイプ II およびタイプ III プロセスでは、ある程度の寸法変化が生じます。部品の寸法を最終決定し、フィーチャの公差を設定するときは、陽極酸化の厚さを忘れずに補正してください。これは、小さな変更でも性能に大きな影響を与える可能性がある、嵌合部品やねじ部の場合に特に重要です。
鋭利なエッジでは、電流がこれらの領域に集中する傾向があり、酸化物層が厚くなる傾向があるため、不均一な陽極酸化が発生する可能性があります。より均一な酸化層を実現し、耐久性と外観の両方を向上させるには、設計段階でエッジを丸めるか面取りすることをお勧めします。
実際には、陽極酸化処理を他のコーティング技術と組み合わせて、部品の性能をさらに向上させることができます。たとえば、陽極酸化層上にポリマー コーティング (エポキシやポリウレタンなど) を適用すると、耐摩耗性、耐薬品性、UV 保護を向上させることができます。あるいは、陽極酸化後に電気メッキ(ニッケルまたはクロムなど)を行うと、表面硬度が向上し、耐摩耗性が向上し、光沢仕上げが追加されます。
陽極酸化アルミニウムは、さまざまな仕上げの染料を吸収する多孔質酸化物層のおかげで、美観に優れた柔軟性をもたらします。部分を染める前に、以下の点を考慮してください。
前述したように、陽極酸化アルミニウムはさまざまな方法で着色でき、それぞれに独自の用途と利点があります。方法の選択は、特定のニーズに応じて行う必要があります。
ディップ カラーリング: この方法は簡単で、鮮やかな色を表現できるため、色の多様性が優先される装飾用途に適しています。ただし、この方法で使用される染料は光や熱に対する耐性が低いため、時間の経過とともに色褪せする可能性があります。
電解着色: 耐久性が高く、耐紫外線性の高い色を生成します。建築や屋外用途でよく使用されます。代表的な色には、ゴールド、ブロンズ、ブラックなどがあります。
一体型着色: 酸化層と一体化した色を形成し、高い耐摩耗性と耐食性をもたらします。高い強度と耐久性が要求される自動車や航空宇宙用途でよく使用されます。
干渉色: 建築要素や電子機器の筐体などの高級装飾製品によく見られる、退色しにくい独特の真珠光沢のある色合いやメタリックな色合いを作り出します。
最終的な色は、合金組成、表面仕上げ、酸化物の厚さなどのいくつかの要因によって影響を受ける可能性があります。その結果、陽極酸化処理中に色の一貫性を維持することが困難になる場合があります。制御された条件であっても、同じバッチ内または異なるバッチ間で変動が発生する可能性があります。これらの変動を減らすには、完全な運用の前に小規模なテスト実行を実施するか、複数のベンダーと協力することが役立つ場合があります。
アルミニウム合金が異なれば、染料に対する反応も異なります。たとえば、特定の合金は、その組成により色が不均一になったり、くすんだりする場合があります。シリコンや銅の含有量が多い合金は、陽極酸化後に灰色がかった色調を示す場合があり、最終的な染色色に影響を与える可能性があります。色を優先する場合、望ましい仕上がりを得るために染色によく反応する合金を選択することが不可欠です。
アルミニウムの陽極酸化処理は、多くの業界で重要なプロセスとしてすでに確立されており、日常製品の性能と外観の両方を向上させます。技術の進歩に伴い、陽極酸化処理は持続可能な製造、革新的な材料設計、ナノテクノロジーや生物医学などの新興分野においてさらに重要な役割を果たすようになるでしょう。
Chiggo では、お客様の特定のニーズを満たし、競争市場で優位に立つよう設計された最高品質のアルミニウム陽極酸化サービスの提供を専門としています。 ファイルをアップロードして始めましょう。
ステンレス鋼は、多くの種類の鋼のうちの 1 つにすぎません。強度と靱性を備えているだけでなく、耐食性、機械加工性、溶接性にも優れています。耐久性とコストパフォーマンスを兼ね備えた理想的なCNC加工材とされています。
産業用途では、金属の選択は、強度、硬度、密度などの機械的特性だけでなく、熱特性にも影響されます。考慮すべき最も重要な熱特性の1つは、金属の融点です。 たとえば、炉のコンポーネント、ジェットエンジン燃料ノズル、排気システムは、金属が溶けた場合に壊滅的に失敗する可能性があります。結果として、オリフィスの詰まりやエンジンの故障が発生する可能性があります。融点は、製錬、溶接、鋳造などの製造プロセスでも重要です。ここでは、金属が液体の形である必要があります。これには、溶融金属の極端な熱に耐えるように設計されたツールが必要です。金属は、融点以下の温度でクリープ誘発性の骨折に苦しむ可能性がありますが、デザイナーはしばしば合金を選択するときにベンチマークとして融点を使用します。 金属の融点は何ですか? 融点は、固体が大気圧下で液体に移行し始める最も低い温度です。この温度では、固形相と液相の両方が平衡状態で共存します。融点に達すると、金属が完全に溶けるまで追加の熱は温度を上げません。これは、相変化中に供給される熱が融合の潜熱を克服するために使用されるためです。 異なる金属には、融点が異なり、原子構造と結合強度によって決定されます。しっかりと詰め込まれた原子配置を備えた金属は、一般に融点が高くなります。たとえば、タングステンは、3422°Cで最高の1つです。金属結合の強度は、原子間の引力を克服し、金属を溶かすために必要なエネルギーの量に影響します。たとえば、プラチナや金などの金属は、結合力が弱いため、鉄やタングステンなどの遷移金属と比較して融点が比較的低いです。 金属の融点を変更する方法は? 金属の融点は、通常の条件では一般に安定しています。ただし、特定の要因は特定の状況下でそれを変更できます。 1つの一般的な方法はです合金 - 純粋な金属に他の要素を加えて、異なる融解範囲の新しい材料を形成します。たとえば、スズを銅と混合して青銅を生成すると、純粋な銅と比較して全体的な融点が低下します。 不純物また、顕著な効果を持つこともできます。微量の外部要素でさえ、物質に応じてより高くまたは低い融解温度を崩壊させ、融解温度をシフトする可能性があります。 物理的な形問題も同様です。ナノ粒子、薄膜、または粉末の形の金属は、表面積が高く原子挙動の変化により、バルクの対応物よりも低い温度で溶けます。 ついに、極度の圧力原子がどのように相互作用するかを変えることができ、通常、原子構造を圧縮することで融点を上げます。これは日常のアプリケーションではめったに懸念事項ではありませんが、航空宇宙、深海掘削、高圧物理学研究などの高ストレス環境の材料選択と安全性評価における重要な考慮事項になります。 金属および合金の融点チャート 一般的な金属と合金の融点 金属/合金融点(°C)融点(°F)アルミニウム6601220真鍮(Cu-Zn合金)〜930(構成依存)〜1710ブロンズ(Cu-SN合金)〜913〜1675炭素鋼1425–15402600–2800鋳鉄〜1204〜2200銅10841983年金10641947年鉄15382800鉛328622ニッケル14532647銀9611762ステンレス鋼1375–1530(グレード依存)2500–2785錫232450チタン16703038タングステン〜3400〜6150亜鉛420787 金属融点の完全なリスト(高さから低い) 金属/合金融点(°C)融点(°F)タングステン(w)34006150Rhenium(re)31865767オスミウム(OS)30255477タンタル(TA)29805400モリブデン(MO)26204750ニオビウム(NB)24704473イリジウム(IR)24464435ルテニウム(ru)23344233クロム(CR)1860年3380バナジウム(V)1910年3470ロジウム(RH)1965年3569チタン(TI)16703040コバルト(co)14952723ニッケル(NI)14532647パラジウム(PD)15552831プラチナ(PT)17703220トリウム(TH)17503180ハステロイ(合金)1320–13502410–2460インコルエル(合金)1390–14252540–2600インコロイ(合金)1390–14252540–2600炭素鋼1371–15402500–2800錬鉄1482–15932700–2900ステンレス鋼〜1510〜2750モネル(合金)1300–13502370–2460ベリリウム(be)12852345マンガン(MN)12442271ウラン(u)11322070カプロニッケル1170–12402138–2264延性鉄〜1149〜2100鋳鉄1127–12042060–2200ゴールド(au)10641945年銅(cu)10841983年シルバー(AG)9611761赤い真鍮990–10251810–1880ブロンズ〜913〜1675黄色の真鍮905–9321660–1710海軍本部の真鍮900–9401650–1720コインシルバー8791614スターリングシルバー8931640マンガンブロンズ865–8901590–1630ベリリウム銅865–9551587–1750アルミブロンズ600–6551190–1215アルミニウム(純粋)6601220マグネシウム(mg)6501200プルトニウム(PU)〜640〜1184アンチモン(SB)6301166マグネシウム合金349–649660–1200亜鉛(ZN)420787カドミウム(CD)321610ビスマス(bi)272521バビット(合金)〜249〜480スズ(sn)232450はんだ(PB-SN合金)〜215〜419セレン(SE)*217423インジウム(in)157315ナトリウム(NA)98208カリウム(K)63145ガリウム(GA)〜30〜86セシウム(CS)〜28〜83水銀(HG)-39-38 重要なテイクアウト: タングステン、レニウム、タンタルなどの高融点金属は、極端な熱アプリケーションに不可欠です。これらの金属は、過酷な炉と航空宇宙環境に構造的完全性を保持しています。モリブデンも融解に抵抗し、高温炉の建設に非常に価値があります。 鉄、銅、鋼などの中溶融点金属は、管理可能な融解温度と良好な機械的または電気的特性を組み合わせて、建設、工具、電気システムに汎用性があります。 ガリウム、セシウム、水銀、ブリキ、鉛などの低融点金属は、はんだ、温度計、低融合合金などの特殊な用途にとって価値があります。
お気に入りのコーヒーマグをキッチンの床に落とすことを想像してみてください。ここで、転倒後にスマートフォンの画面がクモの羽ばたき、または地震中の補強されていないコンクリートの壁がひび割れていることを想像してください。これらの日常の例は、警告なしに突然の破損につながる可能性のある物質的な特性であるBrittlenessを強調しています。安全性と信頼性のために重要な状態:建物、橋、または製品の脆い成分は、説明されていないと壊滅的に失敗する可能性があります。歴史は厳しいリマインダーを提供します。最も有名なRMSタイタニックは、極寒の大西洋の水域で脆くなり、曲げよりも衝撃に割れ、災害に貢献しています。エンジニアとデザイナーは、曲がったり引き伸ばされたりする延性材料とは異なり、脆いものがストレスの下でスナップする傾向があるため、脆性に細心の注意を払っています。 この投稿では、Brittlenessとは何か、それが硬度と靭性とどのように異なるかを探ります。また、ガラスや鋳鉄のような材料が脆弱である理由、およびエンジニアリングデザインでの脆性をテストおよび軽減する方法も説明しています。 brittlenessとは何ですか? 材料科学の脆性は、事前にプラスチックの変形をほとんどまたはまったくない材料の骨折する傾向を指します。簡単に言えば、脆い材料は曲がったり、伸びたりすることはありません。壊れます。もろい物体を曲げようとすると、プラスチックの変形を起こすのではなく、すぐにクラックまたはスナップします。これはその反対です延性、故障する前に、重大なプラスチック変形(たとえば、ワイヤーに引き込まれたり曲がったりする)を維持する材料の能力。非常に延性のある金属(銅や金など)は曲がったり、伸ばしたり、かなり引き出したりすることができますが、脆性材料(ガラスやセラミックなど)が小さな弾性ひずみだけの後に骨折します。 骨格と延性、靭性、硬さ 脆弱性と延性を比較すると、骨折前に粗末に材料がどれだけの材料を変形できるかにかかっています。脆性材料は非常に低い延性を持ち、小さなひずみでそのブレークポイントに達します。延性のあるものは、重大な塑性変形を維持できます。金属では、一般的な経験則は、休憩時の伸長〜5%がしばしば呼ばれることです脆い、一方、〜5%が考慮されます延性(材料およびテスト依存性、セラミックとガラスは通常1%をはるかに下回っています)。実際には、脆い材料はほとんど警告を与えません。彼らはスナップする前に目に見えて曲げたり首を曲げたりしません。にストレス - ひずみ曲線、延性材料は、収量と長いプラスチック領域を示しますが、脆性材料は、最小限の可塑性で突然の骨折までほぼ直線的に弾力性があります。 タフネス破壊前に材料が吸収するエネルギーを説明します(ストレス - ひずみ曲線の下の領域)。通常、材料が高強度と良好な延性を組み合わせると増加します。それは、脆性の厳格な「反対」ではありません。ゴム製のタイヤは、変形して衝撃を吸収するため、困難です。アニールされたガラスは、柔軟に変形できないため脆く、鋭い打撃はそれをひび割れさせることができます。 硬度別の概念です。これは、ひっかき傷や局所的なインデンテーションに対する抵抗です。素材は非常に硬いが脆弱な場合があります。たとえば、ダイヤモンドは引っ掻きに抵抗しますが、可塑性の欠如は、鋭い打撃の下でチップまたは切断することができます。逆に、比較的柔らかいもの(ゴムのような)は、変形する可能性があるため、衝撃に対する亀裂に抵抗する可能性があります。要するに、硬度は局所的な変形に対する耐性に関するものですが、脆性は骨折の挙動を説明しています。 脆性材料の例とそれらがどのように失敗するか 多くの日常的および産業材料は、脆い行動を示しています。ここにいくつかの例があり、それらがストレスの下でどのように失敗するかを示します。 ガラス:普通のガラス(窓ガラスや飲料ガラスなど)は、古典的な脆性素材です。圧縮は非常に硬くて強いですが、引張ストレスや衝撃の下では、柔軟に変形することはできません。硬い床にガラスを落とすと、通常は大きな鋭い破片に骨折します。故障は亀裂の伝播によるものです。小さな欠陥または衝撃点が亀裂を開始すると、プラスチックの変形がほとんどなくガラスを通り抜けます。この脆弱性はその構造に由来します。シリカネットワークは硬くてアモルファスであり、金属とは異なり、ストレスを和らげるモバイル脱臼はありません。興味深いことに、特別な治療法は、ガラスの壊れ(たとえば、表面圧縮応力を導入するために熱処理することによって生成される強化ガラス)を変えることができますが、まだ脆弱ですが、小さくて鈍いダイイスのようなピースに壊れる傾向があります(したがって「安全ガラス」)。フロントガラスで使用されるラミネートガラスは、2つのガラスのプライをプラスチックの中間層(通常はPVB)に結合するため、亀裂が形成されると、層状層がピースを一緒に保持します。これらの処理は故障モードを緩和しますが、根本的にガラスは曲げずに割れて失敗します。 セラミック:セラミックも同様に脆いです。セラミックの花瓶を棚からノックすると、へこみではなくチップまたは粉砕されます。構造的には、セラミックはイオン的および/または共有結合されており、しばしば多結晶です(磁器にもガラスの相が含まれています)。たとえば、磁器プレートでは、原子格子は剛性です。ストレスをかけると、原子面は簡単に滑ることができません。イオン固体では、小さなシフトが同様の充電イオンを並べてもたらし、強く反発し、亀裂が開始されます。転位運動は制限されており、結合は方向性があるため、セラミックは硬度と圧縮強度が高くなりますが、緊張や曲げの下でスナップする傾向があります。それらが故障すると、骨折表面は通常きれいになり、結晶面に沿ってファセットされます(切断)。容量を超えて装填されたセラミックタイルは、体を突破し、清潔でガラスのような骨折で壊れる亀裂が発生し、実質的に目に見える収量はありません。 鋳鉄(特に灰色の鋳鉄):鋳鉄は金属ですが、特定のグレードは脆いことがあることで有名です。古い鋳鉄製のエンジンブロックや鋳鉄パイプの亀裂を見たことがあるなら、脆性骨折を目撃したことがあります。灰色の鋳鉄(骨折表面の灰色にちなんで名付けられた)は、比較的高い炭素含有量を持っています。炭素は、鉄マトリックス全体に分布するグラファイトフレークを形成します。これらのフレークは内部亀裂と強いストレス濃縮器のように振る舞うので、金属は壊れる前にあまり伸びることはできません。その結果、鋳鉄は圧縮が非常に強い(均等にサポートされている場合)が、緊張や衝撃の下で突然故障する可能性があります。対照的に、延性(結節性)鉄は、グラファイトが誘導され、球状結節を形成する修正鋳鉄です(通常はマグネシウム処理を介して)。それははるかに脆く、粉砕するのではなく衝撃下で変形します。これについては、デザインセクションでさらに説明します。 コンクリート:コンクリートは固体で岩のように見えるかもしれません(そしてそれはそうです)が、それは脆い材料の別の例です。圧縮下では、コンクリートは非常に強く、非常に大きな負荷を運ぶことができます。ただし、緊張(引っ張ったり曲げたりする)では、単純なコンクリート亀裂が簡単に亀裂があります。セメントペーストとハードミネラル凝集体の混合は、粗末な流れる能力を備えた剛性マトリックスを形成するため、小さな張力株は微小亀裂を開いてすぐに合体します。そのため、鉄筋コンクリートが非常に一般的です。鋼鉄の鉄筋は、張力を運ぶように埋め込まれ、延性(および靭性)を加えるように埋め込まれています。鋼は、セクションを一緒に保持し、突然の脆性崩壊よりも警告を保持し、警告を提供し、徐々に拡大します。 その他の脆い材料:他にも多くの例があります。高炭素または高度に硬化したツール鋼は、和らげないと脆くなる可能性があります。より高い炭素と硬度が延性を低下させるため、曲がったときにファイルまたは非常に硬いナイフブレードがスナップする場合があります。鉛筆の「鉛」のように、グラファイトは脆弱です。その層状構造により、平面がスライドしてマークを残すことができますが、スティックは控えめな力の下で簡単に壊れます。一部のポリマーも脆いです。ポリスチレン(使い捨てのカトラリーや古いCDのケースで使用される剛性プラスチック)は、曲がるのではなくスナップする傾向があります。 なぜいくつかの材料が脆弱なのですか? 脆性を理解するために、マイクロスケールと原子スケールの材料内で何が起こるかを見るのに役立ちます。材料は原子結合と微細構造が異なり、これらの違いはストレスへの反応を決定します。 結晶金属では、非局在化された金属結合とモバイル脱臼は通常、プラスチックの流れを可能にします。スリップが簡単な場合、ストレスの再分配と亀裂のヒントが鈍化します。結合が非常に方向性がある場合、またはクリスタルが動作可能なスリップシステムをほとんど提供していない場合、可塑性は制限されています。亀裂が核形成して伝播するまでストレスが集中します。 次に、微細構造がその亀裂がどのように成長するかを決定します。鋭い包含物、硬い第2フェーズ、毛穴、または弱いインターフェイスは、亀裂の発射サイトと経路として機能します。温度とひずみ速度も重要です。温度の低下またはひずみ速度が高いと、可塑性が削減され、脆性骨折に向かって挙動が押し上げられます。環境はバランスを傾ける可能性があります。原子の水素は亀裂を加速しますが、穀物結合の分解(例えば、顆粒間腐食や不純物の分離など)は境界に沿った凝集を減らします。 簡単に言えば、プラスチックの宿泊施設が希少で亀裂運転部隊が支配しているときに、脆性が現れます。材料が脱臼を自由に動かしたり、亀裂先端でエネルギーを消散させたりできない場合、故障は突然であり、ほとんど警告を与えません。 脆性を測定またはテストする方法は? Brittlenessは、ストレス下での材料の挙動に関するものであるため(変形がほとんどなく破壊)、密度や融点のように調べることができる単一の「Brittleness Number」はありません。代わりに、エンジニアは、延性、骨折の靭性、衝撃エネルギーのテストを使用して間接的に特徴づけています。 脆性挙動を測定する標準的な方法の1つは、引張試験です。ストレスと緊張が記録されている間に犬の骨標本が引っ張られ、ストレス - ひずみ曲線が生成されます。脆性応答は、低い領域では、ほとんどまたはまったく降伏領域を持つ、突然の骨折へのほぼ線形の弾性経路です。 2つのクイックインジケーター - 破損時のエリアと面積の削減 - は、延性の尺度です(そして、brittle性を反比例させます)。脆い材料は、低い伸長と面積の最小限の減少を示します(ネッキングはほとんどまたはまったくありません)。金属の場合、テストのセットアップとレポートはASTM E8に従います。 Charpy V-Notch Impact Testでは、振り子が揺れ動く棒が打たれ、振り子エネルギーの損失(スイング高さの変化による)がジュールの吸収エネルギーとして記録されます(j)。低吸収エネルギーは、脆性反応を示します。高エネルギーは靭性を示します。結果は標本のサイズとノッチのジオメトリに依存するため、シャルピーエネルギーは、基本的な材料定数としてではなく、比較と温度研究に最適です。複数の温度でテストを実行すると、延性から脆性の遷移がマッピングされます。エンジニアは骨折の表面も読みます。明るい、ファセット/切断の特徴は脆性骨折を示唆していますが、鈍い繊維状の外観は延性があることを示します。 もう1つの重要な尺度は、平面鎖骨折の靭性です(kIC)、亀裂の成長に対する材料の抵抗を定量化する骨折 - 機械的パラメーター。これは、事前に砕いた試験片の精度テストから決定され、亀裂が伸び始めた臨界応力強度係数を表します。脆性材料は低いkですICしたがって、欠陥の耐性が低いため、極端な亀裂は比較的低いストレスで故障を引き起こす可能性がありますが、丈夫で延性のある材料はkが高いですIC亀裂を鈍らせたり逮捕したりできます。エンジニアは、骨折データを使用して、許容される欠陥のサイズを設定し、突然の骨折に対して設計します。 デザインの脆性障害を防ぐ方法 脆性性は突然の壊滅的な失敗につながる可能性があるため、エンジニアはそれに対処するための戦略を開発しました - 異なる材料を選択するか、材料と設計を変更して脆性行動を危険にさせることにより。 材料の選択と治療 脆性の故障を避ける最も簡単な方法は、緊張、曲げ、または衝撃の部品に対してより延性のある材料を選択することです。構造設計者は、しばしば、壊れる前に屈服して曲がる鋼またはアルミニウム合金を好みます。高い硬度、高温能力、または特定の電気挙動などの特性が必要な場合(本質的に脆性オプション(技術セラミック、ディスプレイガラスなど)を指定する必要があります。鋼では、消費されている高炭素微細構造は非常に硬いが脆い。強化は、タフネスの大きな利益と少し硬く取引します。鋳鉄は別のケースを提供します。灰色の鉄はフレークグラファイトのために脆い。少量のMgまたはCEを追加すると、紡錘体グラファイトを備えた延性(結節性)鉄が生成され、ストレス濃度が低下し、延性と耐衝撃性が著しく改善されます。 複合材料 脆性マトリックスとより延性のある相を組み合わせると、靭性が高まります。鉄筋コンクリートのペアコンクリート(脆性)で鋼鉄鉄筋(延性)を備えているため、セクションが緊張を運び、突然の崩壊を避けることができます。同様に、繊維強化ポリマーとセラミックマトリックスコンポジット埋め込みガラス、炭素、またはアラミド繊維を埋め込む亀裂、偏向、引き抜き、亀裂の成長に必要なエネルギーを増加させます(骨折の靭性が高くなります)。 ジオメトリと安全因子を設計します 鋭い角とノッチを避けることにより、ストレス濃縮器を減らします。寛大なフィレットを使用してください。荷重が最も高い厚さまたはrib骨を追加します。薄いガラスシートは、厚いペインよりもはるかに簡単に壊れます。セラミックとガラスの場合、表面圧縮を誘導する(たとえば、焼き戻し)は、亀裂を開始するためにより高い引張応力を必要とすることにより、明らかな靭性を高めます。脆性部品はほとんど警告を与えないため、設計者はより高い安全因子を使用し、定期的な検査をスケジュールします。たとえば、航空宇宙では、脆弱な方法で動作できるコンポーネントは、X線または超音波で内部亀裂をチェックします。 環境制御 温度と環境は、材料がどのように変形し、骨折するかを変えます。低温で合金が脆くなった場合は、最小サービス温度を設定するか、寒冷気候のために延性から脆性への移行温度が低いグレードを選択します。同様に、水素のピックアップがリスク(高強度鋼の水素包含)である場合、充電を最小限に抑える予防コーティングとプロセスを使用し、吸収された水素を追い出すためにベイクアウト(熱排除)を実行します。 […]
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español