3DプリンティングとCNC加工は、最も人気のある2つの製造プロセスです。どちらの方法も、プロトタイプの迅速な生産を可能にするためにデジタル制御システムに依存しており、正確でカスタマイズされた最終用途パーツの作成に適しています。
ただし、ほとんどすべての点で異なります。固体部品の生産に関しては、直接的な競合他社でさえあります。最大の違いは、1つの方法がレイヤーごとに部品層を構築するのに対し、もう1つの方法は材料を削除することで機能することです。 CNCの機械加工と3Dプリントを製品用に選択する岐路に立っていることに気づいた場合は、詳細を確認してください。


添加剤の製造とも呼ばれる3D印刷は、層ごとに材料を追加することにより、デジタルモデルから3次元オブジェクトを作成するプロセスです。このプロセスは、3Dスキャナーから取得したCAD(コンピューター支援設計)ソフトウェアを使用して、またはオンラインリポジトリからダウンロードしたデジタルモデルから始まります。次に、モデルはスライシングソフトウェアにインポートされ、プリンターの青写真として機能する多数の2次元断面層に分割されます。スライスソフトウェアは、これらのレイヤーを3Dプリンターが理解できる一連の指示(多くの場合Gコードで)に変換します。さらに、モデルに張り出した部品が含まれている場合、ソフトウェアは適切な印刷を確保するためにサポート構造を生成する場合があります。最後に、プリンターはこれらの命令に従い、材料層を層ごとに堆積させ、それぞれの新しい層をその下の層に結合し、完全なオブジェクトを徐々に構築します。
3D印刷システムは、1980年代後半にChuck Hullが最初の3D印刷技術であるステレオリソグラフィ(SLA)を発明したときに市場に参入し始めました。新しい材料と技術の進歩に関する継続的な研究により、より多くの3D印刷技術が登場しています。今日の一般的なタイプは次のとおりです。

3Dプリンティングは最先端の添加剤製造プロセスですが、CNC加工(コンピューター数値制御マシニング)は、より伝統的で減算的な製造技術を表しています。 1950年代にNCの初期(数値制御)システムから出現したCNC加工により、デジタル自動化により進化し、業界全体で高精度の製造が可能になりました。
CNCパーツを取得するには、CADソフトウェアを使用してデジタルモデルを作成することから始めます。このモデルは、CAMプログラミングを介してマシン読み取り可能なGコードに変換され、正確な動き、速度、および操作を指定します。その後、ワークピースはCNCマシンに安全に取り付けられ、適切な切削工具が選択され、インストールされます。 CNCマシンはGコードに従います。粗い機械加工から始めて、余分な材料を除去し、最終的な寸法と表面仕上げを達成するために細かい機械加工に進みます。
製造業で広く使用されているCNC加工には、いくつかの一般的なタイプがあります。
どちらのテクノロジーも独自の利点を提供します。CNC加工は高精度と材料の汎用性をもたらしますが、複雑なジオメトリと迅速なプロトタイピングを作成するには3Dプリントが好まれます。それらの選択は、材料要件、設計の複雑さ、生産速度、予算の考慮など、さまざまな要因に依存します。
以下のクイックチェック表は、どのプロセスがニーズに最適なプロセスに最適なプロセスを判断するか、両方の組み合わせが最適な結果を生み出す可能性があるかどうかを判断するのに役立つ簡単な比較を示します。
| 要因 | 3D印刷 | CNC加工 |
| 材料の選択 | ▪ Limited but expending options ▪ Flexible materials and superalloy | ▪ Wide range , including metals, plastics, wood, and composites |
| デザインの複雑さ | ▪ Can achieve highly complex geometries, including lattice structures and organic shapes | ▪ Can produce parts with relatively complex features, such as threaded holes, sharp edges, and curves ▪ Limited by tool accessibility, tool path and type, axis-defined minimum radii, and the need for repositioning during the process |
| 精度 | ▪ Moderate precision, typically ±0.1 mm, though high-end printers can achieve tighter tolerances | ▪ High precision, often ±0.005 mm or better, depending on material and machine ▪ Excellent repeatability |
| 表面仕上げ | ▪ Requires post-processing (e.g. sanding, painting) for a smooth finish ▪ Some 3D printing processes produce surfaces that are grained, rough, and stepped, or features that may appear blurred | ▪ Smooth finish with little to no post-processing (typical 125 Ra finish as machined) |
| 大部分のパーツサイズ | ▪ Up to 914 x 610 x 914 mm (e.g. FDM) ▪ Ideal for smaller prototypes or assemblies | ▪ Up to 2000 x 800 x1000 mm ▪ Suitable for industrial housings and large-scale prototypes |
| 強さ | ▪ In FDM, layer adhesion and print orientation reduce the strength of parts ▪ Metal 3D printed parts in SLM and DMLS offer strength comparable to or even better than traditionally machined parts, especially when heat-treated or made with specific alloys | ▪ The internal structure of parts is continuous, and their strength usually remains at 100% of the native material ▪ Some high-strength alloys may be impossible or difficult to process with extreme precision |
| 設定 | ▪ Minimal setup, require only a digital file and slicer software | ▪ Need workpiece fixation, tool selection, and machine calibration ▪ G-code programming,toolpath generation, and potential part repositioning |
| ビルドの速度 | ▪ Low setup time, but build time can take hours ▪ Quicker for small batches and complex designs ▪ Ideal for design validation, rapid prototyping, and test fits | ▪ Can take ages to set up and program, but cutting can be very fast ▪ Fast for bulk production |
| 料金 | ▪ Cost-effective for small series or custom one-offs ▪ Slight variations in your product’s size can significantly increase your 3D printing manufacturing costs | ▪ More economical for high-volume production ▪ More material waste |
次に、次の一連の質問をすることにより、プロジェクトのCNC加工、3D印刷、またはその両方を選択する必要があるかどうかを判断できます。
3D印刷とCNCの機械加工は、両方とも金属とプラスチックで動作します。 CNC加工には、より広い材料の適応性があります。プラスチックはますます人気が高まっていますが、主に金属から部品を生産するために使用されます。また、CNCプロセスを使用して、森、複合材料、泡、ワックスから部品を製造することもできます。
最も一般的なCNC材料:
3Dプリンティングは、主に熱可塑性物質、樹脂、およびいくつかの金属粉末で動作します。ただし、3Dプリントされた金属部品は安価にラインから外れていませんが、これは変化しています。
一般的な3D印刷材料:
TPUやシリコンなどの非常に柔らかく柔軟な材料が切断力の下で変形し、正確な機械加工が困難になることは注目に値します。同様に、一部の超合金は、高強度、作業硬化、耐熱性のために機械に挑戦しています。これらの材料の場合、3D印刷がより良い選択かもしれません。
5軸以上の高度なマシンは非常に複雑な幾何学を処理できますが、ツールは部品のすべての表面にアクセスできないため、隠された機能やアンダーカットを作成することは依然として困難です(または不可能です)。切削工具自体のジオメトリは、完全に四角い角を機械加工する能力も制限します。さらに、カスタムフィクスチャーまたはジグが要求されることがよくありますが、これは大きな制限になる可能性があります。
3Dプリンターは、CNC加工におけるこれらのジオメトリの課題を排除します。比較的簡単に非常に複雑なジオメトリを生成できます。 SLMなどのプロセスにはサポート構造が必要になる場合がありますが、追加の後処理では、3Dプリントが提供する膨大な設計の自由と複雑さが減少しません。

3D印刷は、一般に、材料の収縮や印刷プロセスの解像度の制限などの要因により、CNC加工よりも正確ではありません。たとえば、SLAのような正確な3D印刷技術は、通常、標準条件下で約±0.1mmの公差を達成します。対照的に、精密CNCマシンは、±0.025mm(0.001インチ)またはさらに優れた耐性を保持することができます。
再現性に関しては、3D印刷(SLAやDLPなどの高精度方法でさえ、CNC加工に遅れをとっています。 CNCマシンは、剛性のある機械セットアップ、正確な制御システム、および減算プロセスの均一性により、優れた一貫性を提供します。対照的に、3D印刷は、材料の収縮、層の接着、環境要因によって引き起こされる変動の影響を受けやすいです。
SLAのような3Dプリンターは、細かく、滑らかでテクスチャのあるレイヤーを備えた部品を生成できますが、適切なツールを備えたCNC加工は、さらに滑らかな表面を実現できます。
どちらの方法も、さまざまなサーフェス仕上げオプションでさらに強化することができ、部品の機能的および美容品質を改善します。たとえば、CNCの機械加工部品は、陽極酸化、パウダーコーティング、ビーズ爆発、およびパッシブ化することができます。同様に、3D印刷部品の表面仕上げオプションには、プレート、ビーズブラスト、研磨、および熱処理が製品を強化することが含まれます。

典型的なジオメトリ(CNCで比較的簡単に達成できる部品)の場合、選択は材料と部品の量の両方に依存します。
プラスチック部品の場合:
金属部品の場合、状況はまったく異なります:
カスタムパーツに適した製造技術を選択することは、克服できない課題のように思えるかもしれませんが、そうする必要はありません。チグゴのお客様にいつもお客様に伝えているように、完璧な、ワンサイズにぴったりの製造方法はありません。最良の選択は、さまざまな要因に依存します。あなたの決定を導くために、私たちはいくつかの基本的な経験則をまとめました:

自分の最適な製造方法についてまだ不確かな場合は、エンジニアに連絡し、デザインをアップロードしてください。 Chiggoは、 cnc machining および中国の3D印刷サービスの大手プロバイダーであり、経験豊富なチームがお手伝いします。
ストレスとひずみは、材料が力にどのように反応するかを説明するための最も重要な概念の2つです。応力は、負荷下の材料内の単位面積あたりの内部力であり、ひずみは、適用された力から生じる材料の形状の変形または変化です。 ただし、ストレスとひずみの関係は理論をはるかに超えています。これは、健全なエンジニアリングの決定に不可欠です。それらを並べて比較することにより、材料のパフォーマンス、安全性がどれだけ安全に変形できるか、いつ失敗する可能性があるかをよりよく予測できます。この記事では、それらの定義、違い、関係、および実用的なアプリケーションについて説明します。 詳細に入る前に、ストレスと緊張に関するこの短い入門ビデオが役立つことがあります。 ストレスとは ストレスは、外部負荷に抵抗するために材料が発達する単位面積あたりの内部力です。顕微鏡的に、適用された負荷は、変形に反対し、構造を一緒に「保持」する原子間力を誘導します。この内部抵抗は、私たちがストレスとして測定するものです。 負荷の適用方法によっては、ストレスは次のように分類されます。 引張応力(σt)および圧縮応力(σc):これらは、断面領域に垂直に作用する正常な応力です。 せん断応力(τ):断面領域と平行に作用する接線力によって引き起こされます。 ねじれ応力(τt):トルクまたはねじれによって誘発されるせん断応力の特定の形態。 その中で、引張ストレスは、エンジニアリング設計における最も基本的なタイプのストレスです。計算式は次のとおりです。 どこ: σ=ストレス(Paまたはn/m²;時々psi) f =適用力(n) a =力が適用される元の断面領域(m²) 材料のストレスがどのように測定されるか 直接ストレスを測定することは不可能なので、代わりに、適用された力または結果として生じる変形のいずれかを測定する必要があります。以下は、重要な測定技術の簡潔な概要です。 方法 /テクノロジー原理測定デバイス /ツール精度と精度一般的なアプリケーションユニバーサルテストマシン(UTM))測定力(f)、ストレス= f/aを計算します統合されたロードセルを備えたUTM★★★★★(高精度)基本的な材料テスト:ストレス - ひずみ曲線、機械的特性評価ひずみゲージ測定ひずみ(ε)、σ= e・ε(線形弾力性を想定)を介して応力を計算する ひずみゲージ、データ収集システム★★★★☆(高)コンポーネント応力分析;疲労評価;組み込み構造監視拡張計測定値の長さの変化、εとσを計算します接触または非接触拡張メーター★★★★☆(高)標本の引張試験;弾性弾性率と降伏ひずみの検証デジタル画像相関(DIC)光学方法は、フルフィールドの表面変形を追跡します高速カメラシステム、DICソフトウェア★★★★☆(フルフィールド)フルフィールドひずみ分析。クラック追跡;物質的な不均一性研究超音波ストレス測定ストレス下での材料の波速度の変化を使用します超音波プローブとレシーバー★★★☆☆(中程度)残留応力検出;溶接されたジョイントと大きな構造における応力監視X線回折(XRD)内部応力によって引き起こされる格子歪みを測定しますXRD回折計、専門ソフトウェア★★★★☆(高精度、表面層に局在する)薄膜、溶接ゾーン、金属およびセラミックの表面残留応力光弾性透明な複屈折材料の光学干渉フリンジを介してストレスを視覚化します偏光のセットアップと複屈折ポリマーモデル★★★☆☆(半定量的な定性)教育デモ;透明モデルにおける実験的ストレス分析マイクロ/ナノスケールの特性評価技術 EBSD、マイクロラマン、ナノインデンテーションなどのテクニックは、マイクロまたはナノスケールのひずみ/ストレスマッピングを提供します 電子またはレーザーベースのシステム、画像分析ソフトウェア★★★★☆(高精度;ローカライズされたマイクロ/ナノスケール) マイクロエレクトロニクス、薄膜、ナノインデンテーション、複合界面の動作 ひずみとは ひずみは、外力にさらされると材料が受ける相対変形の尺度です。これは、単位のない量またはパーセンテージとして表現され、元の長さ(または寸法)の長さ(またはその他の寸法)の変化を表します。 ひずみのタイプは、適用されるストレスに対応します:引張ひずみ、圧縮ひずみ、またはせん断ひずみ。 通常のひずみの式は次のとおりです。 どこ: ϵ =ひずみ(無次元または%で表されます) ΔL=長さの変化 l0=元の長さ 材料の株が測定される方法 さまざまな方法を使用して、ひずみを測定できます。最も一般的に使用される手法は、ひずみゲージと伸筋です。以下の表は、材料のひずみを測定するための一般的な方法をまとめたものです。 方法センシング原則センサー /トランスデューサー測定シナリオ備考ひずみゲージ抵抗の変化フォイルタイプのひずみゲージ静的または低周波ひずみ;一般的に使用されます業界で広く使用されています。低コスト;接着剤の結合と配線接続が必要です拡張計変位クリップオン /コンタクト拡張計材料テスト;全セクション測定高精度;動的テストや高度に局所的な株に適していませんデジタル画像相関(DIC)光学追跡カメラ +スペックルパターンフルフィールドひずみマッピング。亀裂伝播;複雑な形の標本非接触; 2D/3D変形マッピング。高価なシステム圧電センサー圧電効果圧電フィルムまたはクリスタル動的ひずみ、圧力、衝撃、振動高周波応答;静的ひずみ測定には適さないファイバーブラッググレーティング(FBG)光学(ブラッグリフレクション)FBG光ファイバーセンサー長距離にわたる分布または多重化測定EMIの免疫;航空宇宙、エネルギー、スマート構造に適していますレーザードップラー振動計(LDV)ドップラー効果LDVレーザープローブ動的ひずみ/速度測定と表面振動分析非接触;高解像度;高い;表面条件に敏感です ストレスとひずみの重要な違い 以下は、直接の概要を提供するクイックテーブルです。 側面ストレス歪み式σ= f / aε=Δl /l₀ユニットPA(n/m²)、またはpsi(lbf/in²)無次元または%原因外力ストレスによって引き起こされる変形効果内部力を生成して、外部負荷に対抗します。高すぎる場合、塑性変形、骨折、疲労障害、ストレス腐食亀裂につながる可能性があります材料のジオメトリを変更します。降伏点を超えて永続的に弾性制限で回復可能行動材料が抵抗しなければならない領域ごとの内部力。分布に応じて、圧縮、張力、曲げ、またはねじれを引き起こす可能性があります適用された応力下で材料がどれだけ変形するかを説明します。弾性またはプラスチックにすることができます ストレスと緊張が互いにどのように関連するか ストレスはひずみを引き起こします。応力 - ひずみ曲線は、適用された応力に対してひずみ(変形)をプロットすることにより、材料が徐々に増加する荷重の下でどのように変形するかをグラフ化します。その重要なポイントを確認しましょう。 1。弾性領域(ポイントO – B) […]
ポリアミドは、アミド結合を含むすべてのポリマーの一般的な用語です。ナイロンはもともと、産業用および消費者用途向けに開発された合成ポリアミドPA6およびPA66のデュポンの商標でした。ナイロンはポリアミドのサブセットですが、2つの用語は完全に交換可能ではありません。この記事では、ポリアミドとナイロンの関係を調査し、それらの重要な特性とパフォーマンスの詳細な比較を提供します。 ポリアミドとは何ですか? ポリアミド(PA)は、繰り返し単位がアミド(-CO-NH-)結合によってリンクされている高分子量ポリマーのクラスです。ポリアミドは自然または合成のいずれかです。天然のポリアミドには、羊毛、絹、コラーゲン、ケラチンが含まれます。合成ポリアミドは、3つのカテゴリに分類できます。 脂肪族ポリアミド(PA6、PA66、PA11、PA12):一般工学にぴったりです。それらは、強度、靭性、耐摩耗性、および簡単な処理のバランスを妥当なコストでバランスさせます。 芳香族ポリアミド(Kevlar®やNomex®などのアラミド):極端なパフォーマンスに最適です。 Kevlar®のようなパラアミッドは、例外的な引張強度と耐抵抗を提供しますが、Nomex®のようなメタアラミッドは、固有の火炎耐性と熱安定性に充てられています。それらは高価であり、溶融処理できないため、一部の形状と製造ルートはより制限されています。 半芳香族ポリアミド(PPA、PA6T、PA6/12T):高温エンジニアリングを対象としています。それらは、高温の剛性と寸法を維持し、多くの自動車液をうまく処理します。それらは溶融処理(注入/押し出し)を処理することができますが、より高い溶融温度で動作し、慎重に乾燥する必要があります。脂肪族PAとアラミッドの間にはコストがかかります。 それらは、分子鎖間の水素結合による結晶性、良好な熱耐性と耐薬品性、および水分吸収の傾向を高めていますが、これらの特性の程度はタイプによって大きく異なります。それらの機械的特性(引張強度、弾性弾性率、破壊時の伸び)は、鎖の剛性と結晶性に密接に結び付けられています。これらは高いほど、材料が硬くて強くなりますが、より脆弱です。値が低いと、より柔らかく、より丈夫な素材が生じます。 ポリアミドの一般的なグレード 以下は、最も一般的な合成ポリアミドグレード、それらの重要な特性、および典型的なアプリケーションの概要です。 学年一般名モノマー炭素数重合引張強度(MPA)弾性率(GPA)融解温度(°C)HDT(°C、乾燥、1.8 MPa)水分吸収(%) @50%RH耐薬品性PA6ナイロン6(合成)Caprolactam(ε-Caprolactam)6リングオープン重合60–751.6–2.5220–22565–752.4–3.2(〜9–11%飽和) 優れたオイル/燃料抵抗;強酸/塩基に敏感PA66ナイロン6,6ヘキサメチレンジアミン +アディピン酸6+6凝縮重合70–852.5–3.0255–26575–852.5–3.5(〜8–9%飽和) PA6と同様に、わずかに優れた溶媒耐性PA11バイオベースのポリアミド11-アミナウンドカノ酸11自己凝縮50–65 1.2–1.8185–19055–651.5–2.0優れた耐薬品性、塩スプレー、耐性耐性PA12長鎖ポリアミドラウリル・ラクタム12リングオープン重合45–551.6–1.8178–18050–600.5–1.0PA11に似ています。優れた耐薬品性PA46高テンプポリアミドテトラメチレンジアミン +アディピン酸4+6凝縮重合80–1003.0–3.5〜295160–1702.0–3.0(飽和すると高く) 優れた高テンプル、オイル、耐摩耗性ケブラーパラアミッドP-フェニレンジアミン +テレフタロイル塩化物 - 凝縮重合3000-360070–130融解なし; 500°Cを超える分解 最大300°Cまでのプロパティを保持します。 500°Cを超える分解 3–7(水分回復 @65%RH) ほとんどの化学物質に耐性があります。 UV敏感 ポリアミドを識別する方法 簡単なハンズオンテストでポリアミドをすばやくスクリーニングします - 火傷テストで始まります(溶けてから黄色で傾けた青色の炎で燃やし、セロリのような臭いを放ち、硬い黒いビーズを残します)またはホットニードルテスト(同じ匂いできれいに柔らかくなります)。 PA6/PA66(密度≈1.13–1.15 g/cm³)は水に沈み、PA11/PA12(≈1.01–1.03 g/cm³)のような長鎖グレードは水または希釈アルコールに浮かぶ可能性があることに注意してください。決定的なラボIDの場合、FTIR分光法を使用して、特徴的なN – Hストレッチ(〜3300cm⁻¹)およびC = Oストレッチ(〜1630cm⁻¹)を検出し、DSCを使用して融点(PA12≈178°C、PA6≈215°C、PA66≈260°C)を確認します。 ナイロンとは何ですか? ナイロンは合成ポリアミドの最も有名なサブセットです。実際には、人々がプラスチックやテキスタイルで「ポリアミド」と言うとき、彼らはほとんど常にナイロン型材料を指しています。 最も広く使用されているコマーシャルナイロン - ナイロン6、ナイロン6/6、ナイロン11、およびナイロン12などは、脂肪族ポリアミドです。それらの半結晶性微細構造と強力な水素結合により、一般工学の強度、靭性、耐摩耗性、良好な熱と耐薬品性の優れた組み合わせが得られます。多目的で信頼できる、それらは広範囲の従来の製造および添加剤技術を通じて処理することができ、それらをの家族の長年の主食にすることができますエンジニアリングプラスチック。 ナイロンを識別する方法 全体として、ナイロンとポリアミドを識別するために使用される方法は、フィールドとラボでの両方で、本質的に同じです。主な違いは、ナイロングレードが正確な区別のためにより正確な基準を必要とすることです。実験室の設定では、融点を測定し、特定のグレードを特定するために、微分スキャン熱量測定(DSC)が一般的に使用されます。密度テストは、ショートチェーンナイロン(PA6/PA66)から長鎖ナイロン(PA11/PA12)を分離するための簡単な方法を提供します。さらなる確認が必要な場合、X線回折(XRD)や溶融流量(MFR)分析などの手法を適用して、6シリーズと11/12シリーズの材料をより正確に区別できます。 ポリアミドとナイロンの一般的な特性 「ポリアミド」と「ナイロン」は、しばしば同じ意味で使用されますが、ナイロンはポリアミドの1つのタイプにすぎません。このセクションでは、それらの共通のプロパティについて詳しく説明します。 構成と構造 ポリアミドは、バックボーンでアミド(-CO-NH-)結合を繰り返すことで特徴付けられますが、多くのモノマーから合成できます。脂肪族ポリアミドは、ε-カプロラクタム、ヘキサメチレンジアミンを加えたヘキサメチレンジアミン、または11-アミナウンドカノ酸などの直線鎖ユニットから構築されていますが、芳香族アラミッドは硬いベンゼンリングを連鎖に取り入れています。モノマーと重合法の選択により、鎖の柔軟性、結晶化度、水素結合密度が決定されます。これは、機械的強度、熱安定性、油、燃料、および多くの化学物質に対する耐性に影響を与える要因です。 ナイロンは、狭いモノマーセットから作られた脂肪族ポリアミドのサブセットです。一般的なナイロングレードには、ヘキサメチレンジアミンにアディピン酸を凝縮することにより生成されるPA6とPA6,6が含まれます。それらの均一なチェーンセグメントと強力な水素結合は、引張強度、靭性、耐摩耗性、および中程度の耐熱性のバランスの取れた混合をもたらす半結晶ネットワークを作成します。 融点 ポリアミド(ナイロンを含む)の融点は、モノマーの化学構造、結晶性の程度、水素結合密度、鎖の柔軟性の4つの主な要因によって決定されます。一般に、より多くの定期的に間隔を置いた水素結合とより高い結晶性が融解温度を上昇させます。逆に、結晶の形成を破壊する柔軟なチェーンセグメントが融点を低下させます。たとえば、PA11やPA12などの長鎖、低結晶性ポリアミドは178〜180°C前後に溶け、PA6やPA6/6のような一般的なナイロンは、約215°Cと265°Cの間で溶融し、ケブラーなどの硬質アロマティックポリアミドは500°Cを超えて溶けません。 引張強度と靭性 一般に、ナイロンは強度と靭性のバランスの取れた組み合わせを提供し、他のポリアミドはより広範なパフォーマンスチューニングを提供します。高強度の端で、Kevlar®などの芳香族アラミッドは、最大3.6 GPa(〜3600 MPa)までの繊維引張強度を達成し、弾道衝撃下でのエネルギー吸収に優れています。反対側では、PA11やPA12のような長鎖脂肪族ポリアミドは、優れた延性と高い衝撃耐性のために引張強度(〜45〜60 MPa)を交換します。一般的なナイロン(PA6およびPA6,6)は真ん中に真っ直ぐに横たわっており、約60〜85 MPaの乾燥した引張強度とバランスの取れた耐衝撃性を提供し、耐荷重く衝撃耐性成形部品に人気のある選択肢となっています。 耐摩耗性 ポリアミドファミリー全体は、良好な耐摩耗性を提供します。 […]
私たちは日常生活の中で常にさまざまな金属素材と接しています。スマートフォンの筐体が何の金属でできているか考えたことはありますか?あるいは、車や自転車はなぜあんなに軽いのに強いのでしょうか?これらの質問に対する答えは、私たちが見落としがちだが重要な役割を果たしている金属、アルミニウムにあることがよくあります。
عربي
عربي中国大陆
简体中文United Kingdom
EnglishFrance
FrançaisDeutschland
Deutschनहीं
नहीं日本
日本語Português
PortuguêsEspaña
Español